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ABSTRACT 

This thesis develops and solves a tri-level optimization model to plan the optimal 

defense of an infrastructure from intelligent attack. We assume that a “defender” will first 

use limited defensive resources to protect system’s components; then, an intelligent 

adversary (“attacker”) will use limited offensive resources to attack unprotected 

components in order to inflict maximum damage to the system. The defender guides 

system operation with an optimization model, so increased operating cost equates to 

damage. This leads to a tri-level “defender-attacker-defender” model (DAD), where the 

second “defender” means “defender as system operator.” 

The general DAD is NP-hard and requires decomposition to solve. We develop 

four decomposition algorithms: direct, nested, reformulation-based, and reordering-

based. The reordering-based algorithm computes an optimistic bound by reordering the 

stages of the DAD, and the reformulation-based algorithm uses subproblems that 

resemble standard capacity-interdiction models. Computational tests on generic instances 

of “defending the shortest path” (DSP) show the nested and reformulation-based 

algorithms to be twice faster than the first, on average. 

A hypothetical instance of DSP provides a concrete illustration: A Spanish marine 

unit, in an emergency deployment, must defend its base-to-port route against potential 

terrorist attacks.   
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EXECUTIVE SUMMARY 

This thesis develops and solves tri-level optimization models to solve the problem 

of defending a generic system from intelligent attack. We assume that a “defender” will 

use limited resources to protect system components, and an intelligent adversary 

(“attacker”) will use limited offensive resources to inflict the maximum possible damage 

on the defended system. The tri-level model becomes a “defender-attacker-defender” 

model (DAD). The defender guides his system operation with an optimization model, so 

damage is measured in terms of increased operations cost.  

We develop a general DAD model that is, apparently, solvable only through 

decomposition. Thus, we devise a decomposition Algorithm 1 for DAD. The master 

problem for this decomposition resembles a master problem for a standard Benders 

decomposition, but the subproblem, instead of being a standard linear program (LP), is a 

mixed-integer linear program (MIP). Algorithm 1 solves this subproblem directly, i.e., 

with LP-based branch-and-bound, while Algorithm 1A solves it by Benders 

decomposition. Thus, Algorithm 1A may be viewed as a nested decomposition algorithm. 

Algorithm 1A proves to be almost twice as fast as Algorithm 1 (1.87 times faster, 

on average) on test problems that involve “defending the shortest path” (DSP). DSP 

represents a situation in which the defender-operator needs to solve a minimization 

problem to operate the system optimally (e.g., transiting from station A to station B in the 

quickest time); the attacker seeks to maximize the defender’s shortest path by interdicting 

some components of the system (e.g., cutting down some segments that lie in the A-B 

path); and the defender has to minimize the largest traversal distance after the attacker’s 

best attack. 

A capacity-interdiction formulation provides an alternative modeling approach to 

the same DAD model. This formulation is somewhat more complex than the formulation 

of the standard decomposition for DAD, and is also more difficult to implement. 

However, it proves to be almost as fast as nested decomposition (Algorithm 1A) for the 

test cases based on DSP.  



 xvi

Interchanging the order of the first two levels of optimization in the model, that is, 

converting “min-max-min” into “min-min-max,” can provide an optimistic lower bound 

on the optimal objective-function value. We give the advantage to the defender who gets 

to see the attacker’s plan before defending the system and operate it. The quality of the 

bound provided by ADD may be poor, but it can be improved by giving extra resource to 

the attacker, creating “ ADD+ .”  

When the defender-operator solves a shortest-path problem, and the restrictions 

on the resources are given by simple knapsack constraints, ADD (and ADD+ ) can be 

solved as a special network-interdiction problem called “maximizing the shortest path” 

(MXSP). In MXSP, the original system is expanded in levels, as many as the number of 

units of defensive resource, and each jump between levels corresponds to a defensive 

action taken by the defender.  

A practical example based on DSP illustrates the effectiveness of the models and 

algorithms developed in this thesis. A small, Spanish infantry unit must traverse from the 

Marine Corps’ headquarters to a nearby naval base for immediate deployment, using the 

road network in Cadiz Bay, Spain. A terrorist group can interdict up to six road segments, 

and the Marine Command can defend against these attacks by protecting 10 segments, by 

means of armed patrols. The road network built to represent this example contains 

approximately 200 nodes and 630 arcs. The solution provides the armed patrols optimal 

allotment and the time that would take the infantry unit to get to the naval base in the 

worst case scenario. 
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I. INTRODUCTION  

This thesis addresses the problem of defending a critical infrastructure (or system) 

from intelligent attack by developing and applying tri-level optimization models. We 

assume the system’s operator, called “defender,” will use limited resources to protect 

(defend) system components. Subsequently, an intelligent adversary will use limited 

offensive resources to inflict maximum damage to the defended system. The defender 

guides system operation with a minimizing optimization model, so increased operating 

costs equate to damage. This leads to a tri-level “defender-attacker-defender” model 

(DAD), where the second “defender” means “defender as system operator.” We explore, 

propose and implement different tri-level models to solve DAD.  

This chapter defines and gives examples of critical infrastructure. It specifies a 

model of behavior for the defender, attacker, and their interactions, and it introduces a 

general framework under which these tri-level models will be developed.     

A. CRITICAL INFRASTRUCTURE  

Especially after 2001, governments have devoted much time and effort to identify 

critical infrastructure (CI) and to assess the impact on their nation’s wealth that 

disruptions to that CI might have. The USA Patriot Act (U.S. Senate and House of 

Representatives 2001) defines CIs as: 

… systems and assets, whether physical or virtual, so vital to the United 
States that the incapacity or destruction of such systems and assets would 
have a debilitating impact on security, national economic security, 
national public health or safety, or any combination of those matters. 

The National Strategy document for Homeland Security (Department of Homeland 

Security 2002) identifies thirteen sectors in which most of CI systems may be framed, 

including agriculture, food, water, public health, energy, transportation, information, and 

telecommunications. 

The Department of Homeland Security (DHS) is responsible for keeping the 

national infrastructure inventory updated with basic information about the systems, 

including: the elements involved, either human, physical or cyber; services provided; 
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dependencies; and interdependencies. (The U.S. Office of the Inspector General stated 

that, as of January 2006, the National Infrastructure Database already contained up to 

77,069 assets ranging from gas stations and retail outlets to nuclear plants and water 

distribution systems; see Inspector General 2006.) 

Listing the systems is only the first step. A comprehensive vulnerability analysis 

is important to enable authorities to evaluate the effects of potential attacks and to invest 

to protect or harden system components. This is being accomplished by setting a common 

methodology for risk assessment, the Risk Management Framework, provided by the 

National Infrastructure Protection Plan (“NIPP”; see Department of Homeland Security 

2002).  

Many of these systems were built to be cost-effective, which implies they often 

provide only a minimum level of redundancy to satisfy demand or other requirements. 

They may reasonably well handle disruptions caused by random degradation of physical 

components, accidents due to mechanical or human failure, and acts of nature. However, 

these CIs may not show robustness against an intelligent attack that destroys critical 

components. For example, three bridges crossing a river in a populated city may handle 

the traffic between both sides even when one of them is closed due to a major accident. 

However when all three are intentionally put out of service, the crossing traffic ceases 

completely. Traditional vulnerability analysis needs the perspective of the terrorist threat 

to capture the behavior and response of a particular system under a new set of 

circumstances.  

The standardized method for vulnerability assessment (Department of Homeland 

Security 2006) starts by analyzing a CI in terms of numerical measures of threat (t), 

consequence (c), and vulnerability (v) for individual system components. Threat reflects 

the likelihood that a component will suffer a terrorist attack. Consequence reflects the 

reduction in the system’s performance given a successful attack on a component (the 

greater the reduction in performance, the greater is the consequence). Vulnerability 

reflects the likelihood that, if an attack occurs, the component will be partially damaged, 

incapacitated, or destroyed. 



3 

Every component i  of a particular CI system is evaluated and given numerical 

values it , ic  and iv , representing threat, consequence and vulnerability, respectively. 

Then, a measure of risk (r) is estimated for a particular system. In general ( ), ,r f t c v= , 

but typically, r t c v= × × . Components are then prioritized with respect to the estimated 

risk and this ordered list eventually provides the decision-maker with a picture to help 

him decide which components should be given priority for protection, where to allocate 

resources, what protective programs should be instituted, and what the appropriate level 

of investment in programs should be. 

The protective programs may seek to prevent any potential attack by taking 

specific actions on the elements of the system subject to protection (e.g., building 

stronger fences along the perimeter of key installations, increasing the number of 

armored patrols on any given border segment), or to reduce its effects (e.g., by training 

emergency-response teams). However, this thesis primarily focuses on physically 

protecting CI components from attack.  

The analysis of those protective actions and their impact on the risk mitigation, 

eventually guides the investments used in a particular program. Sometimes no analysis is 

available, and the program manager implements defensive measures by just following the 

guidelines of a written manual (FEMA 2007). 

How should a limited defensive budget be spent to protect a single CI system as 

well as possible? The current methods utilized to guide investments into protective 

programs are based on priorities on individual components, but ignores component 

interactions. We propose the modeling and solution of an optimal defensive plan obtained 

from the solution of a tri-level optimization model.  

We are interested in many different systems, but these are often modeled as 

networks, where some commodity (e.g., electricity, water) must be moved from one or 

more points to one or more other points, while following the topology of the underlying 

network and laws of physics. For example, consider the U.S. Strategic Petroleum Reserve 

(Department of Energy 2007): This system can be represented as a network in which  
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storage sites represent source nodes; pumping stations represent transit nodes; refineries 

and shipping ports represent sink nodes; and pipelines correspond to arcs that connect the 

various nodes. 

We assume that the operator of the infrastructure, (henceforth called the defender-

operator), operates his system following guidance from an optimization model 

(“Defender Model,” or “D”), specifically by solving a linear program (LP). For example, 

the SPR management office, as the defender-operator, operates the system during an oil 

emergency, and possibly after an attack on the system, to ensure that enough oil flows 

from storage sites to meet demands. 

Before defending the system, the protecting agency (henceforth called defender) 

needs to know how the terrorist organization (henceforth called the attacker) is going to 

attack it. We assume that the attacker, according to his resources, seeks to maximally 

disrupt a system’s operations by interdicting certain components. Thus, the attacker 

solves a bi-level optimization model, Attacker-Defender (AD), where “D” denotes the 

defender-operator’s optimization model mentioned above, solved at the inner level (See 

Brown, Carlyle, Salmeron and Wood 2005). There is no uncertainty about the attacker’s 

resources, or what the effect of attacks might be. This is important because deterministic 

interdiction problems, as presented in this paper, rely on accurate information. Otherwise, 

we would be dealing with a stochastic interdiction problem (Cormican, Morton and 

Wood 1998), which is beyond the scope of this thesis.   

As opposed to Cournot models (Cournot 1838), where both opponents move 

simultaneously, we model the opponents’ interactions following the rules of a 

Stackelberg game (Stackelberg 1952). The leader (attacker) plays first by interdicting the 

system in an optimal way, and then, the follower (defender) observes the actions taken by 

the leader and makes his best choice. In most of the economic models played by the 

Stackelberg rules, any non-optimal solution adopted by the follower that deviates from 

equilibrium may hurt not only himself, but also, the leader. However, this is not the case 

here:  If the attacker makes a non-optimal move, the results cannot cause worse damage  
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than foreseen by the solution of the bi-level model. Also, the defender-operator has the 

option to improve his cost by choosing another course of action which takes advantage of 

the attacker’s neglect. 

One of the key assumptions of these games is perfect information. Decisions 

taken by one player are based on complete knowledge of the actions that will be taken by 

the other. Furthermore, we assume that the attacker has perfect information about the 

system. This means that no components of the system are hidden to the attacker and, 

essentially, both players deal with the same problem. This leads to sensibly conservative 

damage assessments for the defender: The attacker can cause no more disruption to the 

system than the worst case identified by the solution of AD. 

The solution of AD provides valuable information to the defender-operator. First, 

it points out critical components of the system. Second, it lays the groundwork for the 

next embellishment of the Stackelberg game, the addition of a level of active defense: 

Using a tri-level model, the defender seeks to minimize the maximum damage an attacker 

can inflict to the system when it is operated optimally. 

The defender therefore, needs to solve a Defender-Attacker-Defender model DAD 

(See Brown, Carlyle, Salmeron and Wood 2005). Observe that, in order to differentiate 

the two roles that the defender plays in this model, a distinction has been made between 

defender and defender-operator. The former defends the system, while the latter operates 

it optimally. 

Brown, Carlyle, Salmeron and Wood (2005) describe new bi-level models to 

solve the problem of defending CI, applying these models to electrical power grids, 

subways, airports and other systems. These authors also introduce the idea of embedding 

a given AD model in a tri-level DAD and state that this type of problem solves only with 

“extreme difficulty.” 

Brown, Carlyle, Salmeron and Wood (2006) formulate and solve an electrical-

grid protection problem with a tri-level DAD model. However, as opposed to AD 

problems, full-scale tri-level problems cannot be solved yet. 
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This thesis proposes a general framework for DAD models represented as tri-level 

mixed-integer linear programs (TLMIPs), proposes several solution methods for such 

models, and investigates the computational behavior of these methods. Medium-size 

problems are implemented and solved by these models. 

In general, the inner optimization problem of any TLMIP developed in this thesis 

is an LP for the defender’s system-operation model, and resource constraints on system 

defense and attack will be fairly simple, such as knapsack constraints. 

B. THESIS OUTLINE  

Chapter II proposes and develops a general tri-level DAD model, and a capacity-

interdiction DAD, which reformulates the basic DAD probing other solving 

methodologies. 

Chapter III formulates an ADD model (Attacker-Defender-Defender model), 

where the two outer optimization layers, i.e., “DA,” have been interchanged for the 

ultimate purpose of bounding, and eventually solving, DAD. Interchanging the order of 

these two levels gives the advantage to the defender, so ADD yields a lower bound for  a 

min-max-min DAD. A method is also described to add resource for the attacker in order 

to tighten the bound. Provided this bound is tight enough and easy to obtain, ADD can be 

incorporated in the DAD decomposition method to accelerate the convergence of the 

algorithm.  

Chapter IV presents different solution algorithms for these models and the 

implementation for the “Defending the Shortest-Path” problem (DSP).  

Chapter V presents computational results from testing hypothetical network 

examples of different size and shape against the aforementioned algorithms. 

Finally, Chapter VI illustrates a deployment protection problem of a Spanish 

Marine Corp Special Operation Forces (SOF) unit. This exercise requires the solution of 

DSP, using a tri-level DAD model, for a small Infantry entity who must traverse from its 

home base in San Fernando to the Naval Base in Rota for emergency deployment.  



7 

II. FORMULATIONS FOR THE TRI-LEVEL “DAD” MODEL 

This chapter describes a general DAD model as a tri-level mixed-integer program 

(TLMIP). Direct solutions will typically be impossible, so we provide several indirect 

solution approaches.  

We simplify model notation using the following conventions: 

• Models and model instances are represented by acronyms in uppercase 

letters, 

•  A superscript indicates the type of inner optimization problem (e.g., “LP” 

for linear program or “dLP” for a dual linear program), 

• Lowercase letters then identify the sense of each level’s optimization, 

specifically, “m” for minimization and “x” for maximization. 

• A “hat” over “m” or “x”  indicates that the decision variables for that stage 

are fixed.. 

For example, LPDAD mxm  stands for a tri-level defender-attacker-defender model 

with a min-max-min optimization structure, and with a linear program representing the 

defender-operator’s optimization problem. And, ˆLPDAD mxm  is really just a bi-level 

attacker-defender model because the defender’s variables are fixed. (Appendix I contains 

the complete description of the notation used throughout this thesis.) 

A. A GENERAL DEFENDER-ATTACKER-DEFENDER MODEL 

1. Definitions and Model Assumptions  

We state the inner “D problem” as  

[ D A
( )

] min ( )
Y

D f
∈y x

y  

At this inner level of DAD, the defender-operator operates his system as best as 

possible by setting decision variables y  to minimize operating cost, including penalties 

for unsatisfied constraints. This minimization can also represent other objectives such as 

maximizing operating profit or system output, minimizing unserved demand, and so 
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forth. The set ( )Y x  represents operating constraints, e.g., flow-balance constraints in a 

pipeline model, as affected by a vector of attacks x  that restricts that operation. 

In fact, the attacker seeks maximize the defender-operator’s cost of operating the 

damaged system, so the “AD model” is  

[ D
( )( )

] max min ( )
YX

AD f
∈∈ y xx w

y . 

where ( )X w represents feasible attack plans after the defender implements a defensive 

plan w . If component k  is defended and made invulnerable, the assumption of 

transparency of information implies that component k  will not be attacked. Of course, 

( )X w  will also include at least one resource constraint that limits the extent of possible 

attacks.   

In the outer level of DAD, the defender uses his limited defensive resources to 

protect his system from attack. At this level, the defender’s goal is to minimize the 

maximum damage that the attacker can inflict, where damage is measured in terms of the 

optimal solution to the defender-operator’s inner model. 

The three stages that this tri-level DAD model comprises are summarized as 

follows: 

( )( )
[ ] min max min ( )

W YX
DAD f

∈ ∈∈w y xx w
y            

The vector w  represents the defensive actions taken by the defender to protect 

certain components of the system, and W  represents the feasible region for the defender. 

[ ]DAD  posits that the defender wants to minimize the damage the attacker can 

cause. This will be accomplished by protecting some system components and, thereby, 

certain activities. For simplicity, we assume 

1. Binary defensive actions: 1kw = if the kth component has been 

protected, and 0kw = otherwise. The set W  incorporates these binary 

restrictions as well as the defensive resource constraints.  
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2. Binary attacks: 1kx = if the kth component k is attacked, and 

0kx = otherwise. The set X  incorporates these binary restrictions as 

well as the attacker’s resource constraints.  

3. Continuous activities: ky  represents the level of activity, set by the 

defender-operator, for component k.  We assume that ≤ ≤0 y u  and let 

diag( )U = u . 

4. A “defense” completely armors a component. That is, 1kw =  implies that 

component k is invulnerable to attack. Although 1kx = may be possible 

when 1kw = , the attacker gains nothing from the corresponding attack. 

Since the attacker does not have so much resource that he can waste 

attacks on defended components, along with the assumption of perfect 

information, we may assume that 1kw = also implies 0kx = . 

5. One-to-one relationships are assumed between system components, 

attacks, and activities: A single attack stops exactly a single activity and 

an activity is stopped by no more or less than one attack. 

The DAD model now becomes: 

( )

[ 0] min max min ( ).
W YX

U

DAD f
∈ ∈∈

≤ − ≤ −
w yx

x 1 w y 1 x

y  

This model allows numerous generalizations such as “uninterdictable” activities and 

interdictions that affect more than one activity, although these generalizations will not be 

pursued in this thesis. 

We also assume: 

6. The property of relatively complete recourse prevails for DAD with 

respect to w  and x . (This property derives from the stochastic-

programming literature; see Birge and Louveaux 1997, pp. 92-93). In 

particular, for any defensive plan W∈w , the set 

{ }( ) |X X= ∈ ≤ − ≠ ∅w x x 1 w ; and for any attack plan ( )X∈x w , the 
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set { }( ) | ( )Y Y U= ∈ ≤ − ≠ ∅x y y 1 x . This means that, in all stages, the 

following player has a feasible response to the immediately preceding 

leader’s play. 

 

Proposition 1: For sufficiently large values of  kd , [ 0]DAD  may be reformulated as 

[ 1] min max min ( ) ( ) ,T T

W YX
DAD f D+

∈ ∈∈
+ −

w yx
y x w y  

where 1 2 | |( ... ),d d d=d K  ( )D diag= d , and the term ( )T T +
−x w  stands for the vector 

maximum of and ( )T T−0 x w .█ 

The proof is trivial. Actually, [ 1]DAD  can also be used when interdiction of an 

activity does not force that activity’s level to 0. For instance, suppose (a) the relevant CI 

system is the road network of a particular region; (b) the defender-operator wants to go 

from base A to airport B using a shortest path; (c) the attacker seeks to interdict road 

segments by means of bombardment (terrestrial, aerial, or via improvised explosive 

devices) to maximize the defender’s shortest (quickest) A-B path; and (d) the defender 

can protect certain segments from attack with extra patrols or anti-aircraft weapons. In 

this case, an interdicted road segment might simply have a delay kd  added to its nominal 

traversal time kc , and it may be worth the defender-operator’s effort to incur this delay. 

We also note that the  “+” operator here can be easily replaced by linear constructs and 

does not add any difficulty to the model’s solution.  

2. The Defender-Attacker-Defender Model [ ]LPDAD mxm  

When the inner minimization of [ 1]DAD  is a linear program, the defender must 

solve this is problem: 

 

( )( )[ ] min max minLP T T T

W X
DAD mxm D

+

∈ ≥∈
+ −

w y 0x
c x w y     (1) 

s.t. [ :dual vars. for fixed  and ]y yA =y b π x w , (2) 
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where the vector c  denotes the activity costs and the constraints y yA =y b correspond to 

general system-operation constraints. Note that, hereafter, dual variables for linear-

programming restrictions of MIPs—for instance, π  in [ ]LPDAD mxm —will be denoted in 

square brackets next to the relevant constraints, but without the explanation as in (2).  

Chapter IV proposes some solution procedures for [ ]LPDAD mxm . However, some 

preliminary thoughts about how we might approach the problem will help up us to 

develop further models and solution procedures. The first attempt to solve this model 

might be to transform [ ]LPDAD mxm  into [ ]dLPDAD mxx . This is done by linearizing the 

expression in the objective function including the necessary constraints in the matrix yA , 

temporarily fixing w and x , taking the dual of the inner minimization problem, and 

releasing both variables after rearranging the terms. A bi-level mixed-integer linear 

program (BLMIP) results:  

[ ] min max ( )dLP y T

W
DAD mxx

∈w x,π
b π       (3) 

( )s.t. ( )y TA D +≤ + −π c x w     (4) 

 free, X∈π x     (5) 

Given the last formulation, we would like again to take the dual of the inner 

maximization problem and solve a minimizing MIP problem by choice of , ,x y w . 

However, this is impossible because that inner maximization is not an LP. Therefore, we 

need an alternative approach. 

We need bounds to enclose the objective function from above and below. 

Furthermore, when sequentially calculated in an iterative algorithm, these bounds must 

converge to the optimal value *z . 

Since the outer layer of the tri-level problem is a minimization, fixing the defense 

plan to ˆ=w w , and solving the resulting problem, ˆ[ ]LPDAD mxm , leads to the upper 

bound *ˆ( )z z≥w . By taking the dual of the inner minimization in ˆ[ ]LPDAD mxm , we see 

that it suffices to solve this MIP: 
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ˆ ˆ[ ] ( ) max ( )dLP y TDAD mxx z =
x,π

w b π       (6) 

( )ˆs.t. ( )y TA D +≤ + −π c x w     (7) 

 free, X∈π x     (8) 

This MIP can be solved either directly or by using a decomposition algorithm. A 

solution ( )ˆ ˆ,x π  represents a tentative attack plan x̂  by the attacker and the resultant best 

dual response to that attack plan by the defender-operator. (Observe that the defender-

operator’s operating plan is obtained by solving the primal ˆ ˆ[ ]LPDAD mxm  given both 

ˆ ˆ and w x .)  

Now, suppose that, for a given defensive plan ŵ , we have enumerated all 

possible attack plans x̂  and corresponding extreme-point dual responses π̂  by the 

defender-operator. Let ˆ ˆ( , ) X∈ Πx π denote this enumerated set, and let ˆ ˆXΠ  denote any 

nonempty subset of XΠ . A master problem for the tri-level problem is defined as:  

,
ˆ ˆ ˆ[ ] min

ˆ ˆˆ ˆ ˆ ˆs.t. ( ) ( , )
z

y T T

MPmxx z z

z D X

=

≥ − ∀ ∈ Π

w

b π x w x π
 (9) 

W∈w       (10) 

Observe that, whenever ˆ 1kx = , the term k kd w−  defines an upper bound on how much the 

defender would save if he had protected activity k.  

Since the solution of the subproblem (equations (6)-(8)) certainly occurs at 

( )ˆ ˆ, X∈ Πx π , it follows that ˆ ˆ[ ]MPmxx  is equivalent to [ ]LPDAD mxx  when ˆ ˆX XΠ = Π . 

When ˆ ˆX XΠ ⊆ Π , we call ˆ ˆ[ ]MPmxx  the relaxed master problem. Indeed, it defines a 

relaxation of [ ]dLPDAD mxx , and ẑ  gives a lower bound on the optimal objective to 

[ ]LPDAD . Of course, we hope to obtain a solution by generating only a small subset 

ˆ ˆXΠ , with each ( ) ˆ ˆˆ ˆ, X∈ Πx π   being generated in an iteration of a decomposition 

algorithm. The complete procedure is shown in Section IV.A.  
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B. A CAPACITY-INTERDICTION FORMULATION 

One of the difficulties encountered in the formulation of [ ]dLPDAD mxx  is the 

apparent impossibility of transforming it into a simple minimization problem. Other ways 

to formulate and to solve the problem must be explored. This capacity-interdiction (CN) 

model, which assumes that the level of an interdicted activity must be 0, will prove 

useful:  

[ -CN1] min max minLP T

W X
DAD mxm

∈ ∈ ≥w x y 0
c y      (11) 

s.t. [ ]y yA =y b α   (12) 

( ) [ ]U≤ − +y 1 x w β   (13) 

[ ]≤y u θ   (14) 

Essentially, this model is simply a reformulation of  [ 0]DAD  when the inner 

minimization is an LP. 

Again, we may convert this problem into a bi-level nonlinear MIP (BLMINLP) 

by temporarily fixing x , and taking the dual of the inner minimization problem. After 

rearranging terms and releasing x , we obtain:  

, ,
[ -CN1] min max max ( ) ( )dLP y T T T T

W X
DAD mxx U

∈ ∈
+ − + +

α β θw x
b α 1 x w β u θ  (15) 

s.t. ( )y TA I I+ + ≤α β θ c    (16) 

 free, ,≤ ≤α β 0 θ 0    (17) 

This BLMINLP can be solved, at least in theory, by decomposition methods. 

(Note that a “max-max” is just a “max,” so, in essence, the problem has been converted 

into a min-max defender-attacker model with a mixed-integer optimization model being 

solved by the attacker).  

The next step to improve the model is to allow the defender-operator to make use 

of activities that have been interdicted (the penalties kd  are no longer sufficiently large to 

prevent that from happening). In order to do that, we need to slightly change the model to   
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,
[ -CN2] min max min ( )LP T T

W X
DAD mxm

′∈ ≥∈
′+ +

w y y 0x
c y c d y    (18) 

s.t. [ ]y y yA A ′+ =y y b α   (19) 

( ) [ ]U≤ − +y 1 x w β   (20) 

[ ].′+ ≤y y u θ   (21) 

Essentially, we are expanding the infrastructure by doubling the existing 

activities. By choosing ky′  instead of ky , the defender makes use of the kth activity, which 

has been interdicted, and he must, therefore, pay a penalty. Observe that the variable ky′  

is not subject to the second set of constraints because it represents a fictitious activity that 

is neither interdicted nor defended and, by construction, it will only be used when the 

associated activity is interdicted. 

Taking the dual of the inner min problem yields the following formulation: 

, ,
[ -CN2] min max max ( ) ( )dLP y T T T T

W X
DAD mxx U

∈ ∈
+ − + +

w x α β θ
b α 1 x w β u θ  (22) 

s.t. ( )y TA I I+ + ≤α β θ c     (23) 

( )y TA I+ ≤ +α θ c d     (24) 

 free, ,≤ ≤α β 0 θ 0     (25) 

Chapter IV presents some methods to solve these models ([ ]LPDAD and 

[ -CN]dLPDAD ) and their implementation for a specific problem: “Defending the Shortest 

Path” (DSP). 
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III. AN ATTACKER-DEFENDER-DEFENDER MODEL FOR 
BOUNDING “DAD” 

This chapter formulates a tri-level model whose optimal objective value yields an 

optimistic bound for DAD. The bounding model reorders the stages in DAD to create an 

ADD model. This rearrangement simplifies the model, at least in theory, because the 

inner two minimization levels can now be collapsed into one. By means of “solution-

elimination constraints,” the bound yielded can be brought closer to the optimal DAD 

objective-function value to meet the stopping criterion of the decomposition method. 

Solution methods are proposed in Chapter IV. 

A. MODEL FORMULATION 

Let us consider [ ]LPDAD mxm . Suppose that we interchange the first two levels by 

replacing min-max with max-min: The new model is [ ]LPADD xmm . Because the 

defender gets to observe the attacker’s plan before making his own defensive decisions, 

which can nullify the effects of some individual attacks, we are giving the defender 

advantage. The optimal objective of such a model will yield a lower bound on the optimal 

objective value for [ ]LPDAD mxm . This may be helpful for solving certain versions of this 

problem. The attacker-defender-defender model (ADD) may be formulated as follows:   

( )( )[ ] max min minLP T T T

X W
ADD xmm D

+

∈ ∈ ≥
+ −

x w y 0
c x w y     (26) 

s.t. [ ]y yA =y b π     (27) 

Alternatively, its compact form is: 

( )( )
,

[ ] max minLP T T T

X W
ADD xm D

+

∈ ∈ ≥
+ −

x w y 0
c x w y     (28) 

s.t. [ ]y yA =y b π     (29) 

As we have seen before, the inner minimization problem has a nonlinear objective 

function, and we cannot take its dual and obtain a linear, mixed-integer maximization 

problem. Thus, we may also want to use a capacity-interdiction model reformulation. 
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If we assume that the penalties kd  are much greater than the cost of the activities, 

and that 0kw =  and 1kx =  imply that 0ky = , we can rewrite [ ]LPADD xmm  as: 

[ -CN1] max minLP T

X W
ADD xmm

∈ ∈ ≥x w ,y 0
c y      (30) 

s.t. [ ]y yA =y b α   (31) 

( ) [ ]U≤ − +y 1 x w β   (32) 

[ ]≤y u θ   (33) 

Constraints (32) establish an upper bound on activities depending upon 

interdiction and defense. Constraints (33) represent capacity limitations for every 

component (an example is maximum flow across a pipe segment of a water system). Note 

that we invoke the property of “relatively complete recourse” here to ensure that the 

model is feasible for any feasible attack plan x . 

If we do not make the assumption that the penalties kd  are large enough to 

preclude the utilization of interdicted activities, we may enhance the model as follows: 

[ -CN2] max min ( )LP T T

X W
ADD xmm

′∈ ∈
′+ +

x w ,y,y
c y c d y     (34) 

s.t. [ ]y y yA A ′+ =y y b α  (35) 

( ) [ ]U≤ − +y 1 x w β  (36) 

[ ]′+ ≤y y u θ  (37) 

, ′≥ ≥y 0 y 0     (38) 

Recall that by selecting ky′  instead of ky , the defender agrees to use the kth activity 

with the added penalty.  

In Chapter IV, we develop some methods to solve these models. 

B. STRONGER BOUNDS: STRENGTHENING “ADD” 

Although the solution to ADD gives a lower bound for DAD, the bound may be 

poor. Assume, for instance, that DAD has simple cardinality constraints for attacker and 

defender resources and the right-hand sides of those constraints are the same. In this case, 

the solution ( )ˆ ˆ,w y  obtained from ˆ[ ]LPADD xmm  for any fixed interdiction plan x̂ , will 
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nullify all the attacks implied by x̂ . Thus, the bound is the obviously weak bound 

provided by the solution to the defender-operator’s problem assuming no interdictions at 

all. We can do better.  

Consider the directed network depicted in Figure 1 where the defender-operator’s 

objective is to find the shortest path from s to t. The nominal length of each arc ( , )i j  is 

,i jc , and the potential delay that the attacker can inflict is ,i jd . The attacker will attack 

two arcs and the defender will defend one. The optimal objective value for DAD is 3, but 

the lower bound coming from ADD  is 2 (Figure b). If we give three units of resource to 

the attacker, the optimal objective value for the new problem, denoted by “ ADD+ ,” is 3 

(Figure c) and, therefore, it provides a valid and stronger lower bound on the optimal 

objective-function value *z .  
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1,1

1,1

1,1

2,1

t
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1,1

1,1

1,1

2,1

t s

3

2

1,1

1,1

1,1

2,1

t

a) b) c)  

Figure 1.   Network to illustrate the tightening and validity of the ADD+  
lower bound. Figure a) is the original network; figure b) depicts the 
solution to ADD and figure c) depicts the solution to ADD+ . 

 

Thus, to tighten the lower bound from ADD, we may try to give the attacker extra 

resource. However, if we give him too much, the resulting bound may be not valid. So, 

how much extra resource can we give to the attacker and still be sure of a valid bound? 

As in the example, assume that limits on resources for the attacker and the 

defender are given by simple knapsack constraints, i.e., { }{ }0,1 |n x xX b∈ ≡ ∈ ≤x x a x  

and { }{ }0,1 |n w wW b∈ ≡ ∈ ≤w w a w , respectively. Now, create an instance of ADD+  by 
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giving the attacker 0δ ≥  extra units of resource, i.e., replace X∈x  in ADD with  

{ }{ }( ) 0,1 |n x xX bδ δ∈ ≡ ∈ ≤ +x x a x . The model is formulated as follows: 

( )( )
( )

[ ( )] max min minLP T T T

X W
ADD xmm D

δ
δ

++

∈ ∈ ≥
+ −

x w y 0
c x w y  

s.t. [ ]y yA =y b π  

where δ would be the least interdiction resource which would make the defender use a 

maximal defensive resource to counter it. A valid value for δ  still needs to be found.  

Theorem 1: Let *z  be the optimal objective value of [ ]LPDAD mxm , let ( )*z δ  be the 

optimal objective value for [ ( )]LPADD xmm δ+ , and define 

{ } is maximal for w wW W b≡ ∩ ≤w a w . If 

min x

W
δ

∈
≤

w
a w ,         (39) 

then ( )* *z zδ ≤ . 

Proof: Let us write [ ]LPDAD mxm  with knapsack constraints for the defender and 

attacker, and a general linear program for the defender-operator in this simplified form of 

equation (1): 

( )* min max ,
W X

z f
∈ ∈

=
w x

x w        (40) 

where ( ) ( )( ), min T T T

Y
f D

+

∈
≡ + −

y
x w c x w y . 

Now suppose that the attacker has δ  extra units of attack resource, with δ  

satisfying (39), but must waste that resource on defended activities. This will have no 

effect in the objective-function value because it is always feasible for the defender to 

neutralize the “extra” attacks. Therefore, 

( )*

( )
min max ,

W X
z f

δ∈ ∈
=

w x
x w        (41) 
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s.t. x
k k k

k
a x w δ≥∑       (42) 

Since the attacker must act first, interchanging the max and min benefits the 

defender. Thus,  

( )*

( )
max min ,

X W
z f

δ∈ ∈
≥

x w
x w        (43) 

s.t. x
k k k

k
a x w δ≥∑        (44) 

     ( )
( )

max min ,
X W

f
δ∈ ∈

=
x w

x w       (45) 

     *( )z δ=  by definition. 

        

Equality holds in (45) because (a) we may assume the defender, who now plays 

second, will “post-defend” only interdicted activities and, thus, the left-hand side of (44) 

will always be positive; and (b) constraint (39) ensures that that positive left-hand side is 

always at least  δ . 

It may be the case that, even if δ  does not satisfy (39), *( )z δ  is still a valid lower 

bound on *z . For example, in the simple DAD problem described in Figure 1, 1δ =  is 

the maximum value that is guaranteed to be valid by Theorem 1. However, for 2δ = , 
*( ) 3z δ =  is still a valid lower bound (in this case, * *( )z zδ = ). However, “cheating” in 

this way may not always be possible. 

The solution of ADD+  must be a feasible solution in DAD  to be of any value. 

Therefore, the defender’s actions must not only be feasible with respect to the initial 

constraints W , but also need to nullify some of the attacks. The remaining ones either 

represent a feasible solution for the attacker in the original DAD , or they do not have an 

impact the objective-function value. Consequently, the defensive constraints in ADD+  

are given by W .  

To summarize the last two paragraphs more precisely, the solution of ADD+  will 

give a lower bound for DAD  provided that, in DAD , the optimal objective value is non-

increasing for increasing x  (in A), and non-decreasing for increasing w  (in D). That is, 
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extra attacks ( )δ  do not consume extra defensive resource because they do not affect the 

objective-function value. Neither do extra defenses added to the problem, because the 

best operating plan has already been protected and at least xb  attacks have been left 

uncovered. In this sense, the proof requires that w  be “maximal” with respect to 

constraints W .  

For the special case where both the attacker and defender have cardinality 

constraints in their respective resources, we can think of the following game sequence in 

ADD+ : 

• The attacker interdicts x wb b+  activities; 

• The defender nullifies wb of those attacks and brings back the associated 

activities to their original costs; and 

• Finally, the defender-operator again finds the optimal operational plan for 

the system given the increased costs for non-nullified attacks. 

Ideally, ADD+  is solved in hopes that the solution yielded ( *
ADD+w ) is close 

enough to the DAD objective-function value to meet optimality criterion. Thus, the 

optimality conditions need to be tested in the DAD subproblem formulated in equations 

(6)-(8) having *
ADD+w  as an input ( )*ˆ DAD ADD+←w w . If the upper bound of ˆ[ ]dLPDAD mxx  

reveals a non-optimal gap, that is, DAD ADDz z ε− > , then ADD+ has to be recalculated 

with an added solution-elimination constraint ˆ
ADD+≠w w . Hopefully, the convergence of 

this algorithm to get an ε -optimal solution for DAD is faster than the decomposition 

method for DAD itself. 

The next chapter provides some statistics about the bound’s quality that this 

ADD+ model yields. 
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IV. SOLUTION METHODOLOGIES  

Thus far, we have presented variations on DAD and models for bounding DAD. 

This section adds detail and illustrates general procedures for solving these models. 

Section A provides a basic algorithm to solve DAD and illustrates this solution 

procedure by solving the problem of “Defending the Shortest Path” (DSP). Section B 

solves DSP using the capacity-interdiction version of DAD. Sections C and D deal with 

ADD and  ADD+  and build a special model (MXSP) for solving DSP. This is derived 

from ADD+  and is based on a network-interdiction problem on an expanded network 

with a particular structure.  

A. DEFENDER-ATTACKER-DEFENDER MODEL 

Chapter II sketched an algorithm to solve DAD  by decomposition. We agree that 

any feasible defense plan would give us an upper bound on the objective function. This 

bound can be computed by fixing ˆ=w w and solving the following “upper-bounding 

subproblem:” 

( )

ˆ[ -SP]
ˆ( ) max ( )

ˆs.t. ( )
 free

.

dLP

y T

y T

DAD mxx
z

A D

X

+

=

≤ + −

∈

x,π
w b π

π c x w
π
x

 

ˆ[ -SP]dLPDAD mxx  is a mixed-integer program. We may try to solve it either 

directly or by decomposition. In this latter case we would have an “inner” Benders-like 

decomposition method for the subproblem, and an “outer” decomposition for the full 

DAD (Henceforth we will call this method “nested decomposition,” O’Neill 1976). The 

decomposition for the subproblem is defined by these two problems: 
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( )( )ˆ ˆ ˆ ˆ[ ] min T T TSP mxm D
+

≥
′ + −

y 0
c x w y      (46) 

s.t. y yA =y b       (47) 

,
ˆ ˆ[ ] max

z
MP mxm z′

x
       (48) 

( ) ˆ ˆˆ ˆ ˆ ˆ ˆs.t. , ( , )T T Tz D WY
+

≤ + − ∀ ∈c y x w y w y   (49) 
,X∈x         (50) 

where the set ˆ ˆWY in (48) comprises all pairs ˆ ˆ( , )w y  identified by the subproblem (46) on 

successive iterations.  

Now, ˆ ˆ[ ]SP mxm′  is an LP and ˆ ˆ[ ]MP mxm′  is just a MIP. The (relaxed) master 

problem is defined as usual: 

,

ˆ ˆ[ - ]
ˆ ˆ( ) min

dLP

z

DAD mxx MP

z X zΠ =
w

       (51) 

ˆ ˆˆ ˆ ˆ ˆs.t. ( ) ( , )y T Tz D X≥ − ∀ ∈ Πb π x w x π   (52) 

W∈w      (53) 

where ( )ˆ ˆ,π x  come from the solution of the subproblem either directly or by 

decomposition. In theory, the algorithm would eventually enumerate all possible feasible 

combinations for ( ), ,π x w , so a solution must be found. Let us outline this algorithm. 

1. A Decomposition Algorithm to Solve DAD 

Algorithm 1: 

Input: An instance of [ ]LPDAD mxm  with matrices D, yA , initial feasible defense plan, 
0ŵ  (e.g., 0ˆ =w 0 ), vectors  andyb c , and an allowable optimality gap ε .  

Output: An ε -optimal defensive plan *w  for [ ]LPDAD mxm , the optimal attack plan *x , 

and the optimal system-operation plan *y . 

{ 

Initialize: 0 ˆ ˆˆ ˆ; ; ;z z X←∞ ←−∞ ← Π←∅w w  
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While ( )z z ε− > { 

Solve ˆ[ -SP]dLPDAD mxx  for ŵ  (either directly or by decomposition) to 

obtain an incumbent upper bound on the objective function ˆ( )z w ; 

{ }ˆ ˆˆ ˆ ˆ ˆ( , )X XΠ← Π∪ x π ;  

If ( )ˆ( )z z<w { *ˆ ˆ ˆ( ); ;z z← ←w w w  } 

Solve  ˆ ˆ[ -MP]dLPDAD mxx  for all ˆ ˆˆ ˆ( , ) X∈ Πx π  to obtain ˆ ˆ( )z XΠ  and a new 

defense plan ŵ ; 

ˆ ˆ( );z z X← Π   

} 

Print (“ε -optimal defense plan, activity levels and objective-function values are” 
*w  , *y , *z , “respectively.”)  

} 

The nested decomposition algorithm (Algorithm 1A) is identical to Algorithm 1. 

The only difference is that the subproblem is solved inside an inner loop that takes ŵ  as 

a fixed parameter and, then, proceeds to solve the sub-subproblem ˆ ˆ[ ]SP mxm′  in (46)-(47) 

This is followed by the sub-master problem ˆ ˆ[ ]MP mxm′  in (48)-(50). The solution 

obtained from this inner decomposition loop ( )ˆ ˆ,x y  is now injected into the outer master 

problem. Then, and Algorithm 1 takes over. 

Infanger and Morton (1996) propose sharing cuts for different scenarios at the 

same stage in order to accelerate the convergence of decomposition methods to solve 

multi-stage stochastic linear programs. In the same fashion, it may be possible to use 

results obtained in the solution of the subproblem ˆ[ -SP]dLPDAD mxx  from one major 

iteration to the next. This may improve substantially the solution times reported in Table 

9, but is beyond the scope of this thesis. 
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2. Implementation of DAD for “Defending the Shortest Path” 

We will illustrate Algorithm 1 with the DAD problem “Defending the Shortest 

Path” (DSP). In DSP, the defender needs to minimize the maximum traversal length of 

the network that represents the system infrastructure. We might be dealing with, for 

example, a railway transportation system, a military logistic depot at station A, a potential 

customer at station B, and a certain commodity that must be sent from A to B in the 

shortest time possible. 

The system is modeled as a network with its corresponding set of nodes (e.g., 

train stations on a railway system or road intersections on a road network) and arcs (e.g., 

segments of railways connecting stations or road segments between intersections). Costs 

are defined by arc-traversal times and penalties are defined by delays incurred if 

interdicted arcs are traversed. 

For this model and other models implemented in this thesis, we assume that action 

occurs on arcs. If we wish to take action over a node in the network, we just split it and 

propagate the interdiction and defense through all the arcs that connect the split nodes 

(Ahuja, Magnati and Orlin 1993, pp. 41-42). Furthermore, for simplicity, we consider 

only cardinality constraints in the resources for both attacker and defender. 

Problem definition: Minimize the maximum traversal cost that the attacker is able 

to inflict after his best attack by appropriately selecting the arcs to be protected subject to 

available resources. The system is represented by the directed graph ( ),==G N A which 

contains a set of nodes i∈N  and the linking arcs ( , )k i j= ∈A  with their cost kc  and 

penalty kd . A  represents the set of all arcs and N represents the set of all nodes. If an 

arc k  is traversed, the defender pays its nominal cost kc . However, if that arc has been 

interdicted, an extra cost kd  is added The latter is to be applied if the defender-operator 

traverses k . 

Indices and index sets:   

,i j∈N  Nodes in ( , )=G N A  

s Source node in ( , )=G N A  
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t  Sink node in ( , )=G N A  

( , )k i j= ∈A  Arcs in ( , )=G N A connecting nodes ,i j∈N  

( )iFS  Forward Star of node i. (Set of all arcs k∈A departing from i) 

( )iRS  Reverse Star of node i. (Set of all arcs k∈A arriving at i) 

Data:  

0kc ≥  Nominal cost of traversing arc k  

0kd ≥  Added penalty the defender-operator pays if arc k  is interdicted and then, 

traversed 

xb   Maximum number of attacks to the network (attacker’s resource) 

 wb  Maximum number of arcs that can be protected (defender resource) 

Variables:  

kx   Attacker’s decision to interdict arc k : 1 kx = if arc k is interdicted, and 

0 kx = otherwise 

ky   Defender’s decision to traverse arc k  which has not been 

interdicted: 1 ky = if arc k is traversed, and 0 ky = otherwise 

iπ   Dual variables for flow-balance constraints at each i∈N   

kw  Defender’s decision to defend arc k : 1 kw = if arc k is defended, and 

0 kw = otherwise 

Formulation of the basic DSP model: 

[ ]LPDAD mxm      

( )( )min max min 1
DSP DSP

k k k k kW X k
c d x w y

∈ ∈
∈

+ −∑w yx A

   (54) 
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( ) ( )

1 if =
s.t. 0 \{s,t}

1 if = ,
k k

k i k i

i s
y y i

i t∈ ∈

⎧
⎪− = ∀ ∈⎨
⎪−⎩

∑ ∑
FS RS

N   (55) 

where  

{ }| |0,1 | x
DSP k

k

X x b
∈

⎧ ⎫
= ∈ ≤⎨ ⎬
⎩ ⎭

∑x
A

� , and   (56) 

{ }| |0,1 | w
DSP k

k

W w b
∈

⎧ ⎫
= ∈ ≤⎨ ⎬
⎩ ⎭

∑w
A

� .    (57) 

 

Formulation of the subproblem for DSP: 

Since  we are using decomposition, the following subproblem (see ˆ[ ]dLPDAD mxx , 

equations (3)-(5)) must be solved: 

,

ˆ[ -SP]
ˆ( ) max

dLP

s t

DAD mxx
z π π= −

π x
w      (58) 

ˆs.t : (1 )j i k k k kc d x w kπ π− ≤ + − ∀ ∈A  (59) 

DSPX∈x      (60) 

 freei iπ ∀ ∈N  

Formulation of the master problem for DSP: 

See ˆˆ[ - ]dLPDAD mxx MP , equations (51)-(53).  

,

ˆ ˆ[ ]
ˆ ˆ( ) min

dLP

z

DAD mxx MP

z X z

−

Π =
w

      (61) 

( ) ˆ ˆˆ ˆ ˆ ˆ ˆs.t. ( , )t s k k k
k

z x d w Xπ π
∈

≥ − − ∀ ∈ Π∑ x π
A

 (62) 

DSPW∈w       (63) 

 

Constraints (59) are the optimality conditions for the DSP and constraint (60) is 

the attacker’s resource constraint, along with the integrality requirements for the  
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variables. Constraints (62) are the Benders cuts for each iteration of the algorithm, and 

constraint (63) is the defender’s resource constraint, along with the integrality 

requirements for the variables. 

Chapter V provides some computational results using this algorithm on grid 

networks of different aspects and sizes. 

3. Stronger Bounds for DAD 

The lower bound provided by the master problem ˆˆ[ - ]dLPDAD mxx MP  in equations 

(51)-(53) can be tightened by solving a linear program that calculates the best remaining 

operating plan after the defender utilizes defenses to nullify some of the attacks. 

Let us illustrate with a simple example. Consider the DSP depicted in Figure 2, 

where the defender, with 1 unit of defensive resource, needs to traverse from node 1 to 

node 4. The attacker, with 2 units of offensive resource, wants to maximize the length of 

the defender-operator’s route. 

 
Figure 2.   4-node network to show a simple DSP problem where the lower 

bound provided by the master problem can be tightened.  
 

In the subproblem’s first iteration, because the attacker chooses to attack  

{ }ˆ (2, 4), (3, 4)=x  and the defender-operator chooses to traverse { }ˆ (1, 2), (2, 4)=y , the 

upper bound is set at 4z = . Then, the master problem suggests defending { }ˆ (3, 4)=w  

and, because 3 units of penalty ( )3,4 3d =  are subtracted from the current objective value, 

the bound is brought down to 1z = . However, given the last attacks, the defender could 
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have done better by defending { }ˆ (2, 4)=w  This would increase the lower bound to 2z =  

when the defender traverses { }ˆ (1, 2), (2, 4)=y . 

Observe that when the defender has more resources than the attacker, this bound 

will always equal the uninterdicted shortest-path length. 

A valid lower bound can be obtained from the solution of the following capacity-

expansion LP model, specialized for the DSP. 

,
ˆ ˆ ˆ[ ] min T TLPmxm C

′≥
′ ′+

y y 0
c y x y       (64) 

s.t. y y yA A ′+ =y y b      (65) 

ˆT wb′ ≤x y       (66) 

ˆ( ) 0T ′− =1 x y       (67) 

′+ ≤y y 1 ,      (68) 
 

where ( )D diag= d , ( )C diag= c  and ˆ ˆ(1 ) ( )C C D′ = − + +c x x . The vector ′y  denotes the 

defender’s decision to protect and traverse an interdicted set of arcs and y  denotes the 

defender’s decision to traverse and take no defensive action on a different set of arcs, 

which may or may not have been interdicted. Constraint (66)  represents an upper limit in 

the number of interdicted activities that may be protected and then, traversed. Constraint 

(67) restricts the use of ′y  to those activities that have been attacked. Finally, constraints 

(68) are the capacity expansion constraints for every activity.  

For the example presented above, the system transformation implied by the 

capacity-expansion LP model is depicted in the following figure: 
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1

3

2

1,1

1,1

3,1

5,1

4

c(i,j),u(i,j) ji

1,1

2,1
 

Figure 3.   Transformation of the interdicted system of Figure 1 to solve a 
capacity-expansion model and obtain a lower bound. The 
interdicted activities are “doubled” with a total cost of k k kc c d′ = + . 
Observe that the arcs are labeled in terms of cost and capacity 
instead of cost and penalty.  

 

The defender must choose a path from 1 to 4 that minimizes the cost and that 

implies the selection of, at most, one of the newly created arcs. 

Algorithm 1B is a modification of Algorithm 1 where, right after de master 

problem, the capacity-expansion model is solved for the previous pair of ŵ  and x̂ . In the 

computational chapter, we shall see the tradeoffs between adding an extra step in 

Algorithm 1B to solve an LP, and more importantly, the improvement attained by 

tightening the lower bound as well as the validity of this bound. 

B. CAPACITY-INTERDICTION DEFENDER-ATTACKER-DEFENDER 
MODEL 

This model is introduced in formulas (11)-(14) and is repeated here for reference. 

It is a bi-level MIP, which is, again, difficult to solve directly:  

[ -CN1] min max minLP T

W X
DAD mxm

∈ ∈ ≥w x y 0
c y  

s.t. [ ]
( ) [ ]

[ ]

y yA
U

=
≤ − +
≤

y b α
y 1 x w β
y u θ
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As we claimed at the beginning of the previous chapter, any feasible ŵ  will 

eventually determine an upper bound *z z≥ . We need to solve the Benders subproblem 

ˆ[ ]LPDAD mxx for ŵ : 

ˆ[ -CN-SP]
ˆ ˆ( ) max ( ) ( )

dLP

y T T T

DAD mxx
z = + − + +

x,α,β,θ
w b α 1 x w β u θ   (69) 

s.t. ( )y TA I I+ + ≤α β θ c    (70) 

 free, ,≤ ≤α β 0 θ 0    (71) 

X∈x      (72) 

However, the objective function is still non-linear in the term ( )ˆ T− +1 x w β . Since 

ŵ  is fixed beforehand, we can break up the problem for the different values that ˆ kw  can 

take on, either 1 or 0: 

• When ˆ 1kw = , the kth activity  cannot be attacked and the term 

( )ˆ T− +1 x w β  becomes
ˆ| 1

2
k

k
k w

β
=

∑  

• When ˆ 0kw =  we have ( ) ( )
ˆ| 0

ˆ 1
k

T
k k

k w

x β
=

− + = −∑1 x w β , which is still non-

linear. Extra variables and constraints are needed to linearize the term in 

this case: 

( )

( )
ˆ ˆ| 0 | 0

1

ˆs.t. 1 | 0
ˆ| 0

0 ,

k k

k k k
k w k w

k k k

k k k k

k

x

M x k w
Mx k w

k

β β

β
β β
β

= =

′− =

′ ≥ − − ∀ =

′ ≤ + ∀ =
′ ≤ ∀

∑ ∑

 

where M is a sufficiently large number so that the first inequality is obviated 

whenever 0kx = .  

The subproblem can be rewritten as follows: 
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, , , ˆ ˆ| 1 | 0

ˆ[ -CN-SP]
ˆ( ) max ( ) 2

k k

dLP

y T T
k k

k w k w

DAD mxx
z β β

= =

′= + + +∑ ∑
α β θ x

w b α u θ    (73) 

s.t. ( )y TA I I+ + ≤α β θ c  

( ) ˆ1 | 0k k kM x k wβ ′ ≥ − − ∀ =  (74) 

ˆ| 0k k k kMx k wβ β′ ≤ + ∀ =  (75) 

0k kβ ′ ≤ ∀   (76) 

 free, , ,
X

′≤ ≤ ≤
∈

α β 0 β 0 θ 0
x

 

With solutions ( )ˆ ˆ ˆ ˆ ˆˆˆ ˆ, , , X∈ΑΒΘα β θ x  obtained from the subproblem in all iterations 

up to the current one, we can solve the lower-bounding master problem: 

ˆ ˆ[ -CN-MP]
ˆ ˆ ˆˆ( ) min

dLP

W

DAD mxx

z X z
∈

ΑΒΘ =
w

       (77) 

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆˆ ˆˆ ˆs.t. ( ) ( ) ( , , , )y T T Tz X≥ + − + + ∀ ∈ΑΒΘb α 1 x w β u θ α β θ x  (78) 

where the set ˆ ˆ ˆˆ X XΑΒΘ ∈ΑΒΘ enumerates all outcomes identified by the subproblem on 

every iteration. 

1. An Algorithm to Solve DAD-CN 

The following algorithm solves the reformulation-based DAD model.  

Algorithm 2: 

Input: An instance of [ -CN1]DADmxm , an allowable optimality gap ε , and any feasible 

defense plan 0ŵ (e.g., ˆ =w 0 ).  

Output: An ε -optimal defensive plan *w  for [ -CN1]DADmxm  , as well as the optimal 

attack plan *x and the optimal system-operation plan *y . 

{ 

Initialize: 0 ˆ ˆ ˆˆˆ ˆ; ; ;z z X←∞ ←−∞ ← ΑΒΘ ←∅w w  

While ( )z z ε− > { 
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Solve ˆ[ -CN-SP]dLPDAD mxx  with input ŵ  (see equations (73)-(76)) to 

obtain an incumbent upper bound on the objective function ˆ( )z w , the 

attack plan x̂  and the dual variables ˆ ˆˆ , ,α β θ ; 

( ){ }ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, , ,X XΑΒΘ ←ΑΒΘ ∪ α β θ x ; 

If ( )ˆ( )z z<w { 

  *ˆ ˆ( ); ;z z← ←w w w  

  If ( ) break from While loop;z z ε− ≤  

} 

Solve  ˆ ˆ[ -CN-MP]dLPDAD mxx  with input ( )ˆ ˆ ˆ ˆ ˆˆˆ ˆ, , , X∈ΑΒΘα β θ x  (See 

equations (77)-(78) ), to obtain ˆ ˆ ˆˆ( )z XΑΒΘ and a new defense plan ŵ ; 

ˆ ˆ ˆˆ( );z z X← ΑΒΘ  

} 

Print (“ε -optimal defense plan, activity levels and objective-function values are” 
*w  , *y , *z , “respectively.”) ; 

} 

2. Implementation of DAD-CN Model for DSP 

We now proceed to implement DAD in its capacity-interdiction version for the 

DSP. We do not allow the defender-operator to traverse interdicted arcs, so we put into 

effect the first of the two models -CN1LPDAD mxm . 

Indices and index sets. The same as those used in [ ]LPDAD mxm    

Data. We must include here:  

1ku =  Nominal capacity of arc ( , )i j .  
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Variables:  

iα   Dual variable for the operative constraints on each node i . 

kβ  Dual variables for capacity-interdiction constraints on every arc k  

kβ ′  Auxiliary variables for capacity-interdiction constraints  

kθ  Dual variables for the max-flow constraints on every arc   

Formulation of the basic problem for DSP: 

( )
,

[ -CN]
min max 1

DSP DSP

dLP

s t k k k k kX k k

DAD mxx
x w uα α β θ

∈ ∈
∈ ∈

≤ ≤

− + − + +∑ ∑w W x
β 0 θ 0

A A

 

s.t. ( , )j i k k kc k i jα α β θ− + + ≤ ∀ = ∈A  

 

Formulation of the subproblem for DSP: 

,

,, , , ˆ ˆ| 1 | 0

ˆ[ -CN-SP]
ˆ( ) max 2

i j k

dLP

s t k i j k k
k w k w k

DAD mxx
z uα α β β θ

= = ∈

′= − + + +∑ ∑ ∑x α β θ
w

A

 

s.t. ( , )j i k k kc k i jα α β θ− + + ≤ ∀ = ∈A    (79) 

( ) ˆ1 | 0k k kM x k wβ ′ ≥ − − ∀ ∈ =A  (80) 

ˆ| 0k k k kMx k wβ β′ ≤ + ∀ ∈ =A  (81) 

DSPX∈x      (82)
 0, 0, 0, freek k k kβ β θ α′≤ ≤ ≤  

Constraints (79) are the optimality conditions for DSP; constraints (80) and (81) 

are used to linearize the model; and constraint (82) is the attacker’s resource constraint. 
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Formulation of the master problem for DSP: 

,

ˆ ˆ[ -CN-MP]
ˆ ˆ ˆˆ( ) min

dLP

z

DAD mxx

z X zΑΒΘ =
w

 

( )

( )

ˆ ˆˆ ˆ ˆs.t. 1

ˆ ˆ ˆ ˆ ˆˆˆ ˆ, , ,

s t k k k k k
k k

z x w u

X

α α β θ
∈ ∈

≥ − + − + +

∀ ∈ΑΒΘ

∑ ∑

α β θ x
A A  

DSPW∈w  

C. THE ATTACKER-DEFENDER-DEFENDER MODEL. 

This section proposes a method to solve the Attacker-Defender-Defender model 

in the capacity-interdiction version sketched in Chapter III. The purpose is to obtain a 

lower bound on *z  for DAD. 

When we outlined the model, we mentioned that we need to use bounds to solve 

bi-level MIPs. For that reason, a decomposition algorithm seems appropriate. Since the 

outer layer is a maximization problem, any feasible x̂  leads to a lower bound on *z . This 

bound can be calculated by solving the following subproblem: 

, ,
ˆ ˆ[ -SP] ( ) min ( )LP

W
ADD xmm z

′∈ ≥ ≥
′= + +

w y 0 y 0
x cy c d y     (83) 

s.t. [ ]y y yA A ′+ =y y b α   (84) 

ˆ( ) [ ]U≤ − +y 1 x w β   (85) 

[ ]′+ ≤y y u θ   (86) 

As stated in the previous chapter, the inclusion of the second set of constraints 

allows us to model an interdicted activity k that cannot be used if it has been attacked 

( )ˆ 1kx = , unless it is defended. (Specifically for DSP, ( ) ( )1 1k ky w= ⇒ =  ). However, 

since the activity is artificially doubled by ky′ , it is still possible to use it, but only if the 

corresponding per-unit penalty kd  is paid. This alternative action is characterized by 

setting the variable 1ky′ = . The third constraint keeps the values of  and ′y y  within the 

capacity limits. (For certain type of problems such as DSP, we can assume that, since 

w is binary, ≥y 0 and ′ ≥y 0  will lead to binary solutions.)  
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The vectors ŷ  and ŵ  extracted from the solution to the subproblem (we need to 

form a new ˆ ˆ ˆ ′←y y + y ), are now useful to compute an upper bound, which will be given 

by the optimum value of the following master problem:  

ˆ ˆˆ ˆ[ -MP] ( ) maxLP

X
ADD xmm z WY z

∈
=

x
      (87) 

( )( ) ˆ ˆˆ ˆ ˆ ˆs.t. ( , )T T Tz D WY
+

≤ + − ∀ ∈c x w y w y  (88) 

Here, constraints (88) represents Benders cuts based on the pair ( ) ˆ ˆˆ ˆ, WY∈w y  

coming from all previous SP solutions. The set ˆ ˆWY  denotes the ( )ˆ ˆ,w y  pairs identified 

by the algorithm. When ˆ ˆWY WY⊂ , the master problem is a relaxation of LPADD xmm  

and ˆ ˆ( , )z w y , which denotes the solution of the master problem given ( )ˆ ˆ,w y , is an upper 

bound on the objective value.  

1.  An Algorithm to Solve ADD 

In the following two sub-sections, we propose an algorithm to solve the 

reordering-based ADD using decomposition, and implement the algorithm for DSP. 

Algorithm 3: 

Input: An instance of ADDxmm  and an allowable optimality gap ε , any feasible attack 

plan 0x̂ (e.g., 0ˆ =x 0 ).  

Output: An ε -optimal defensive plan *w  for LPADD xmm , as well as the optimal attack 

plan *x , optimal system-operation plan *y  and a lower bound for DAD ( *ˆ DAD ADDz z← ). 

{ 

Initialize: 0 ˆ ˆˆ ˆ; ; ; ;z z WY←∞ ←−∞ ← ←∅x x  

While ( )z z ε− > {  

Solve ˆ[ -SP]LPADD xmm  with input x̂  to obtain an incumbent lower bound 

ˆ( )z x , defense plan ŵ , and operating plan ˆ ˆ ˆ ′← +y y y ; 
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( ){ }ˆ ˆ ˆ ˆ ˆ ˆ,WY WY← ∪ w y ; 

If ( )ˆ( )z z>x { 

  ˆ( );z z← x * ˆ;←x x  

  If ( ) break from While loop;z z ε− ≤  

} 

Solve ˆ ˆ[ -MP]LPADD xmm  for all ( )ˆ ˆ,w y derived from ˆ ˆWY , to obtain an 

upper bound ˆ ˆ( )z WY  and a new attack plan x̂ ; 

ˆ ˆ( )z z WY← ;  

} 

Print (“ADD ε -optimal defense plan, activity levels and DAD lower bound values 

are” *w  , *y , *z , “respectively.”); 

} 

2. Implementation of ADD for DSP 

Problem definition. The Shortest Path Problem (DSP), as defined in Section A.  

Indices and index sets. The same as those used in [ ]LPDAD mxm    

Data. The new data with respect to [ ]LPDAD mxm  are: 

1ku =   Nominal capacity of arc k   

Variables. Here, we must add: 

ky′   Defender’s decision to traverse arc k  which has been attacked and not 

protected. 0 ky′ = if arc k is traversed, and 0 ky′ = otherwise. 

Formulation of the basic problem for DSP: As in the previous subsections and, 

for clarity, we start with the formulation of the basic problem: 
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,

[ ] max min ( )
DSPDSP

LP
k k k k kWX k

ADD xmm c y c d y
∈∈

′

′+ +∑wx
y y

 

( ) ( )

1 if =
s.t. ( ) ( ) 0 \{s,t}

1 if =
k k k k

k i k i

i s
y y y y i

i t∈ ∈

⎧
⎪′ ′+ − + = ∀ ∈⎨
⎪−⎩

∑ ∑
FS RS

N  

(1 )k k ky x w k≤ − + ∀ ∈A  

1k ky y k′+ ≤ ∀ ∈A  

Formulation of the subproblem for DSP: 

,

ˆ[ -SP]
ˆ( ) min ( )

DSP

LP

k k k k kW k

ADD xmm
z c y c d y

∈
∈′

′= + +∑w
y y

x
A

      (89) 

( ) ( )

1 if =
s.t. ( ) ( ) 0 \{s,t}

1 if =
k k k k

k i k i

i s
y y y y i

i t∈ ∈

⎧
⎪′ ′+ − + = ∀ ∈⎨
⎪−⎩

∑ ∑
FS RS

N  (90) 

 

ˆ(1 )k k ky x w k≤ − + ∀ ∈A    (91) 

1k ky y k′+ ≤ ∀ ∈A   (92) 

0, 0k ky y k′≥ ≥ ∀ ∈A    (93) 

Constraints (90) represent standard flow-balance constraints for a shortest-path 

problem. Constraints (91) are the capacity-interdiction constraints for every arc 

(although, for fixed x̂ , these are actually capacity-expansion constraints). Constraints 

(92) are the flow capacity constraints. Since , 1i ju =  (already implemented in the model), 

either ,i jy  or ,i jy′  must be chosen by the defender-operator. 

Formulation of the master problem for DSP: 

,

ˆ ˆ[ -MP]
ˆ ˆ( ) max

DSP

LP

X z

ADD xmm

z WY z
∈

=
x

        (94) 

( ) ( ) ˆ ˆˆ ˆ ˆ ˆs.t. (1 ) ,k k k k k
k

z c x w d y WY
∈

≤ + − ∀ ∈∑ w y
A

  (95) 
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D. A SPECIALIZED ALGORITHM TO SOLVE DSP 

The previous section illustrated the implementation of ADD for DSP. Let 

DSPxmm  be an instance of [ ]ADDxmm  where attacker and defender have cardinality 

constraints on their actions. Then [ ]DSPxmm  may be viewed as follows: 

• The attacker finds an interdiction plan x̂ ; 

• The defender chooses up to wb  interdicted arcs, whose cost is ( )k kc d+ , 

and converts them back to their original cost kc ; and 

• Finally, the defender-operator solves the shortest-path problem through 

the network. 

A max-min-min is just a max-min where the inner two stages (the defense and the 

system operation) are carried out simultaneously. The problem can be envisioned as a 

type of network-interdiction problem and solved as the “Maximizing the Shortest-path” 

(“ MXSP ”; see Israeli and Wood 2002) in an expanded network with the following 

structure: 

The network G  of Figure 4 is expanded in levels as shown in Figure 5. 

Essentially, each level is a copy of the original network. In addition, an extra set of arcs, 

denoted by 1k +′∈A , links levels and allows the defender to jump from one level to the 

next. These “between-level” arcs k ′  are not subject to interdiction and each mimics its 

fellow “same-level” arc. However, each head points to the corresponding node in the next 

higher level. The number of levels equals the number of defensive resource available plus 

one. (For example, if the defender has four units of defense resources, the network gets 

expanded in levels zero through four, i.e., {0,1,2,..., }L=L  where 4wL b= = ). In this 

particular example, the defender has one unit of resource ( )1wb =  and the network is 

expanded by only one level. 



39 

 
Figure 4.   Original network  G  with 4 nodes and 4 arcs that represents a 

hypothetical shortest-path problem that the defender must solve. 
 

S0

T1

LEVEL 0

LEVEL 1

“Same-level” arcs

“Between-level” arcs 

 

Figure 5.   Expanded network  +G  when 1wb = . Solving the network-
interdiction problem in +G  is equivalent to solving ADD in G . 

 

If N denotes the set of all nodes in the original network, + = ×N N L  is the set of 

all nodes in ( , )+ + +=G N A , that is, { }0 1
,

, ,..., L
i l

i i i+

∈ ∈

=
N L

N ∪ . 

Likewise, if A  represents the set of all arcs k  in the original network, 0
+A  is the 

set of all “same-level” arcs in +G , { }0 0 1, ,..., )L
k

k k k+

∈

= ∪
A

A ; and 1
+A  is the set of all 

between-level arcs, { }1 0 1 1, ,..., L
k

k k k
+

+
−

′∈

′ ′ ′= ∪
A

A . Then, 0 1
+ + += ∪A A A . 

The defender-operator must traverse from the source node at level zero to the sink 

node located in the uppermost level. 

 
,

[ ] max min ( )
DSP

LP T T T

X
MXSP D

′∈ ≥ ≥
′+ +

x y 0 y 0
c x y c y     (96) 

's.t. [ ]y y y
l lA A l′+ = ∀ ∈y y b πL   (97) 
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The new variable ′y  corresponds to the defender-operator’s decision to jump 

from one level to the next, skipping any possible interdiction and paying the original cost. 

The functioning of the variable ′y  is very similar to the ′y used in ADD (see equations 

(83)-(84) ). However, in this case, we do not need a constraint to control the expenditure 

of defense resource. This is because the structure of the new network itself will force the 

defender to pick exactly wb  arcs to defend.  

Observe now that, as opposed to the generic models, after fixing x , everything is 

linear in the objective function. If we take the dual of the inner min problem, we obtain 

the following MIP:    

[ ] max max ( )
DSP

dLP y T
l l

X
MXSP

∈x π
b π      (98) 

s.t. ( ) [ ]y T
lA D≤ +π c x y    (99) 

( ) [ ]y T
lA ′ ′≤π c y    (100) 

freeπ  

Since this is still an NP-hard MIP (Israeli and Wood 2002), it may be difficult to 

solve for large problems. Because we are expanding the network by adding more levels 

according to the number of defensive resources, the number of decision variables 

increases. A simple, square-lattice network with 25 nodes on each side has only 2,400 

arcs, but if 10wb = , [ ]dLPMXSP  has 45,600 variables. 

1. Implementation of MXSP in +G  

Problem definition. Maximize the shortest s-t path in an expanded directed 

network +G by interdicting arcs. (Note that the formulation uses data and notation from 

the original network G  rather than the expanded network +G ).   

Indices and index sets:  

,i j∈N  Nodes in ( , )=G N A   

l∈L   Levels  { }0,1,..., L=L  where wL b= (defense resources) 

k∈A   Arcs in ( , )=G N A   
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s   Source node in ( , )=G N A , located at level 0 

t   Sink node in ( , )=G N A , located at level L  

( )iFS  Forward Star of node i∈N  

( )iRS   Reverse Star of node i∈N  

 

Data: Similar as those used in the DAD implementation (Section 4) 

Variables:  

,k ly   Defender’s decision to traverse arc k  at level l. , 1k ly =  if arc is traversed, 

, 0k ly =  otherwise   

,k ly′   Defender’s decision to defend and traverse arc k  between levels l and 

1l + . , 1k ly′ =  if arc is traversed, , 0k ly′ =  otherwise   

Problem Formulation: 

( ) , ,, \{ }

[ ]
max min

DSP

LP

k k k k l k k lX k l k l L

MXSP
c d x y c y

′∈
∈ ∈ ∈ ∈

′+ +∑∑ ∑ ∑y yx A L A L

    (101) 

{ }, , , ,
( ) ( )

1 for = and 0
s.t. ( ) ( ) 0 ( , ) \ ( ,0), ( , )

1 for = and 
k l k l k l k l

k i k i

i s l
y y y y i l s t L

i t l L
∈ ∈

⎧ =
⎪′ ′+ − + = ∀ ∈ ×⎨
⎪− =⎩

∑ ∑
FS RS

N L  (102) 

, 0 ,k ly k l≥ ∀ ∈ ∀ ∈A L       (103) 

, 0 , \{ }k ly k l L′ ≥ ∀ ∈ ∀ ∈A L      (104) 

 

Constraints (102) are the flow-balance constraints on every node in +G .  
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Formulation of dual problem: 

,0,,

[ ]
max

dLP

st L

MXSP
π π−

x π

       (105) 

, , ,s.t. ( , ) , [ ]i l j l k k k k ld x c k i j l yπ π− − ≤ ∀ = ∈ ∀ ∈A L  (106) 

, , 1 ,( , ) , \{ } [ ]i l j l k k lc k i j l L yπ π + ′− ≤ ∀ = ∈ ∀ ∈A L  (107) 

,0 0sπ =       (108) 

DSPX∈x       (109) 

freeπ  

Constraints (106) and (107) are optimality constraints for DSP, and constraint 

(108) normalizes the dual variables (this is valid since the inner min problem has one 

redundant flow balance constraint). 

Chapter V shows computational results obtained for a batch of hypothetical 

networks of different size and shape. It, also, investigates the quality of the bound it 

produces with respect to DAD. Further, it shows the differences from the more generally 

applicable ADD solution method implemented in Section C. 

2. Solving MXSP by Decomposition [ -D]LPMXSP  

Another possible approach to solving MXSP is using a decomposition method. In 

doing so, we will be dealing with constrained shortest paths on one hand, and the typical 

cuts of a master problem on the other. Since that outer layer is a maximization problem, 

any feasible attack plan ˆ( )x  will give us a lower bound on the objective function. We can 

get this bound by solving the following subproblem: 

( )
,

ˆ ˆ[ -SP] ( ) minLP T T TMXSP z D
′≥ ≥

′= + +
y 0 y 0

x c x y c y     (110) 

's.t. [ ]y y
l lA A l L+ = ∀ ∈y y b π   (111) 

Let Y Y Y Y′ ′= × denote the set that contains all possible pairs of ( , )′y y . In 

addition, ˆ ˆY Y Y Y′ ′⊆  is just a subset of Y Y′ , where only certain defensive/utilization pairs 

have been identified by the following master problem: 



43 

,
ˆ ˆ[ - ] ( ) max

DSP

LP

X
MXSP MP z Y Y z

∈
′ =

z x
      (112) 

( ) ˆ ˆˆ ˆ ˆ ˆs.t. ( , )T T Tz D Y Y′ ′ ′≤ + + + ∀ ∈c x y c y y y  (113) 

The solution of this master problem, as with previously discussed decomposition 

algorithms (see Section IV.C),  yields an upper bound on *z . 

The subproblem is an LP with an totally unimodular constraint matrix (Ahuja, 

Magnanti, and Orlin, 1993, pp. 447-449). Thus, the variables y  and ′y  only need to be 

non-negative and continuous, and will adopt a binary values intrinsically. 

However, the master problem is still a MIP and the vector x  (the attacker’s 

decision variables) must be binary. Essentially, we are dealing with another difficult 

problem. We might try to tighten it by using of well-known techniques to reduce the size 

of the feasible region for the LP relaxation of the MIP, adding integer cutting planes, but 

that is beyond the scope of this thesis. 

a. An Algorithm to Solve MXSP by Decomposition 

The next two subsections propose a decomposition algorithm to solve 

[ -D]LPMXSP . 

Algorithm 4: 

Input: An instance of [ ]ADDxmm  ([ ]DSPxmm ), preprocessed by expanding the network 

and transformed into an instance of MXSP , and any feasible attack plan ox̂ (e.g., oˆ =x 0 ).  

Output: An ε -optimal defensive plan *′y  for ADD , the optimal attack plan *x , the 

optimal way to operate the system following a worst-case attack *y , and a lower bound 

for DAD, *ˆ DAD MXSPz z← . 

{ 

Initialize: 0 ˆ ˆˆ ˆ; ; ; ;z z Y Y′←∞ ← −∞ ← ←∅x x  

While ( )z z ε− > { 
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Solve [ -SP]LPMXSP  with input x̂  to obtain ˆ( )z x , and the optimal 

combination of defensive and operating plans ˆ ˆ,′y y ; { }ˆ ˆ ˆ ˆ ˆ ˆ( , )Y Y Y Y′ ′ ′← ∪ y y ; 

If ( )ˆ( )z z>x { 

  ˆ( );z z← x * ˆ;←x x  

  If ( ) break from While loop;z z δ− ≤  

} 

Solve [ -MP]LPMXSP  for all ˆ ˆˆ ˆ( , ) Y Y′ ′∈y y , to obtain ˆ ˆ( )z Y Y′ and the next 

attack plan x̂ ; 

ˆ ˆ( )z z Y Y′← ;  

}  

Print (“ε -optimal defense plan for ADD , activity levels and lower bound 

for DAD are” *′y  , *y , *z , “respectively.”) ; 

} 

b. Implementation of  MXSP in +G  by Decomposition 

Indices, sets, parameters, and variables of this formulation are the same as 

those proposed in the direct implementation of MXSP. The first subproblem is 

implemented as follows: 

( ) , ,, \{ }

[ -SP]
ˆmin

LP

k k k k l k k l
k l k l L

MXSP
z c d x y c y

′
∈ ∈ ∈ ∈

′= + +∑∑ ∑ ∑y y
A L A L

   (114) 

, , , ,
( ) ( )

1 for = , 0
s.t. ( ) ( ) 0 ( , ) \{( ,0), ( , )}

1 for = ,
k l k l k l k l

k i k i

i s l
y y y y i l s t L

i t l L∈ ∈

=⎧
⎪′ ′+ − + = ∀ ∈ ×⎨
⎪− =⎩

∑ ∑
FS RS

N L

 

, 0 ,k ly k l≥ ∀ ∈ ∈A L  
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, 0 , \{ }k ly k l L′ ≥ ∀ ∈ ∈A L  

 

The master problem is: 

[ -MP]
ˆ ˆ( , ) max

DSP

LP

X

MXSP
z z

∈
′ =

x
y y         (115) 

( ) , ,
\{ }

ˆ ˆˆ ˆ ˆ ˆs.t. ( , )k k k k l k k l
k l k l L

z c d x y c y Y Y
∈ ∈ ∈ ∈

′ ′ ′≤ + + ∀ ∈∑∑ ∑ ∑ y y
A L A L

 (116) 
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V. COMPUTATIONAL RESULTS  

This chapter presents results obtained by testing the four algorithms described 

above against hypothetical grid networks, with fixed structure and randomly generated 

arc attributes. The grids are created using Java code (Sun Microsystems 2004) using the 

pseudo-random number generator included in Java’s class “Random.” The algorithms are 

implemented in GAMS (GAMS Development Corporation 2007). 

A. COMPUTATIONAL RESULTS FOR DAD MODELS 

This section shows the results when DAD  is implemented to solve DSP 

(Defending the Shortest Path, i.e., the tri-level shortest-path defense problem) for a 

network with the following characteristics: 

• Square topology similar as Figure 6 with a 10×10 grid of nodes (plus 

source and sink).  

• There is one source node s and one sink node t. Arcs k  departing and 

arriving to these nodes have cost 1kc =  and interdiction penalty 0kd = . 

 
 

Figure 6.   Network square topology with an n×n grid of nodes. 

 

• Other arc costs kc  and penalties kd  and penalties, except those mentioned 

above, are randomly, uniformly distributed on [0,1] and [1,2] respectively. 
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The XPRESS solver is used within GAMS (XPRESS Solver Manual, GAMS 

2007), with an absolute termination criterion of 1 0.01ε = , i.e., 1%, and the same value 

for the allowable decomposition gap ( 2 0.01ε = ). (Tests for z z ε− ≤  in the algorithms 

are replaced by 1 1 2( ) ( )z z zε ε ε+ − − ≤ .  

The first experiment solves DSP as an instance of [ ]LPDAD   using Algorithm 1 

and 1A, with the subproblem solved directly (standard decomposition) and by nested 

decomposition respectively. 

Table 1 provides summary statistics of execution time in seconds, elapsed time 

(which includes equation-generating time and other overhead), and number of iterations, 

for different interdiction and defensive integer resources. Appendix II displays a 

complete table with all combinations of attack and defensive resource ranging from two 

to seven. 

 

  Standard decomposition 
Algorithm 1  

Nested decomposition 
Algorithm 1A 

Ratio
 

Attack Defen. 
CPU time 
A (sec.) 

Elapsed 
time (sec.) Iter. 

CPU time 
B  (sec.) 

Elapsed 
time sec.) Iter. /A B

2 2 2.7 4.2 4 1.2 7.5 4 2.30 

3 3 21.5 24.8 8 10.7 31.0 7 2.01 

4 4 109.6 114.8 11 57.3 124.9 14 1.91 

5 5 396.6 406.4 21 306.0 484.2 28 1.30 

6 6 3047.0 3067.6 43 1719.0 2075.9 32 1.77 

7 7 6278.9 6298.9 54 1490.0 1674.6 16 4.21 

  Avg: 1.87 
 

Table 1.   Computational results for DSP using Algorithm 1 and 1A (Section 
IV.A.3.). The “standard decomposition” solves each subproblem 
directly, i.e., using LP-based branch-and-bound on the subproblem 
MIP. “Nested decomposition” solves the subproblem by Benders 
decomposition. “Ratio” represents the improvement in CPU times 
for the nested decomposition method with respect to the direct 
decomposition one. 
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On average, the nested decomposition runs 1.87 times faster than the standard 

decomposition. (We compute this improvement with respect to CPU time, because most 

of the extra elapsed time could be recovered by a more efficient implementation that 

avoided the GAMS overhead).       
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Figure 7.   CPU times for DSP problem using Algorithm 1. With less volume 
under the surface, which indicates fewer seconds to execute, the 
nested decomposition proves to outperform the standard DAD for 
almost all cases tested. 

 

Figure 7 shows solution CPU times for each model (standard and nested 

decomposition). The horizontal axes correspond to attacks and defensive resources. We 

can see how solution time increases as more resources come into play. Moreover, it can 

be observed that the amount of attack resource has remarkably more effect on solution 

time than does defensive resource. Finally, comparing both graphs, the smaller volume 

under the solution-time surface for the nested decomposition indicates, as also see from 

Table 1, a better overall performance. 

Algorithm 1B proposed in Section IV.A proves to be faster (1.64 times on 

average) than the standard decomposition method (Table 10 in Appendix II). The 

tightening of the lower bound by solving a capacity-expansion LP is especially useful in 

the early iterations of the decomposition algorithm. For the first 6 problems tested (Table 

10) Algorithm 1B performs on average 4.70 times faster than Algorithm 1, but not too 
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much improvement is obtained on the remaining 30 problems (1.02) when more than 10 

iterations are typically needed to meet the algorithm’s optimality criterion. 

The next experiment explores the efficiency of Algorithm 2 (Section IV.B), when 

the same sample problems are solved  by implementing the capacity-interdiction version 

of DAD, [ -CN]LPDAD . Table 2 shows a summary of the results for different values of 

“M”. 

 

  Algorithm 2 [ -CN]LPDAD  
Capacity-interdiction (M=2)  

Algorithm 2 [ -CN]LPDAD  
Capacity-interdiction (M=1)  

A D 
CPU time E  

(sec.) 

Elap. 
time 
(sec.) Iter. 

Ratio 
/A E  

CPU time F  
(sec.) 

Elap. 
time 
(sec.) Iter. 

Ratio 
/A F  

2 2 6.7 8.3 5 0.39 6.0 8.3 6 0.44 

3 3 31.8 35.0 6 0.68 19.2 21.4 6 1.12 

4 4 387.0 394.1 14 0.28 74.1 77.5 10 1.48 

5 5 1363.0 1369.6 18 0.29 296.1 303.9 17 1.34 

6 6 12620.0 12635.9 35 0.24 1799.0 1815.7 39 1.69 

7 7 24210.0 24226.5 39 0.26 4717.0 4732.9 37 1.33 

 Avg: 0.45  Avg: 1.36
 

Table 2.   Computational results for Algorithm 2 (Section IV.B.8.). The 
“ratio” denotes the  improvement (decline) of the algorithm with 
respect to the performance of Algorithm 1 implementing the 
standard decomposition DAD model. The value of M is a key issue 
in the capacity-interdiction model. 

 

A careful selection of the value of M is required. A large value for M, such as 

M=2, is very expensive computationally speaking. As we see in the right hand side of the 

table, for M=1, Algorithm 2 is remarkably faster, close to one order of magnitude. In fact, 

its overall performance approaches that of the nested decomposition algorithm.  

However, if M is not sufficiently large, the algorithm may give an incorrect 

solution. Among all the cases tested for M=1 (Table 11 in Appendix II), in five occasions 

there is a discrepancy in the objective-function value. This means that the selected value 

of M is not large enough for the algorithm to work correctly. 
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B. BOUND QUALITY FROM ADD MODELS 

Although they solve different problems, the reordering-based ADD models have 

the ultimate objective of providing a valid bound for the general DAD problem. This 

section explores the quality of the bound and the execution times when the standard 

decomposition algorithm for DAD model (Algorithm 1) is compared to the general 

[ ]LPADD+  (Algorithm 3 in Section IV.C) and the specialized ADD+  model for DSP 

([ ]MXSP+ , Section IV.D). 

The network used in this test is the same 10×10 lattice used in the previous 

section. Note that the attacker always gets his original amount of resource plus the 

defender’s resource: x xb b δ= + , where wbδ = .  

As we observe in the columns for the “relative differences” in Table 3, [ ]LPADD+  

and [ ]LPMXSP+  provide a reasonable lower bound for the objective value, although it 

seems to worsen when more resources are added to the problem. 

  
  [ ]LPDAD  

Algorithm 1 
[ ]LPADD+  

Algorithm 3 
[ ]LPMXSP+  

 

A D *z  
CPU 
(sec) 

*z  diff Rel diff CPU 
(sec) 

*z  diff Rel diff CPU 
(sec) 

2 3 4.58 3.4 4.58 0.00 0.0% 34.2 4.55 0.03 0.7% 44.0 

2 4 4.58 4.1 4.53 0.05 1.1% 353.9 4.53 0.05 1.1% 1350.0 

3 3 4.75 21.5 4.49 0.26 5.5% 104.8 4.55 0.20 4.2% 540.5 

3 4 4.75 32.9 4.58 0.17 3.6% 477.6 4.55 0.20 4.2% 190.8 

4 2 4.96 66.6 4.59 0.37 7.5% 80.0 4.58 0.38 7.7% 879.1 

5 2 5.20 150.8 4.59 0.61 11.7% 321.8 4.59 0.61 11.7% 3621.0 

5 3 5.07 211.0 4.59 0.48 9.5% 4916.0 4.58 0.49 9.7% 5632.0 

  Avg 5.5%   Avg 5.6%  

 
Table 3.   Bound quality for ADD+ models solving DSP. “A” and “D” denote 

attack and defensive resources respectively; *z  denotes the 
objective-function value of DAD model for the related problems; 

*z  denotes the bound provided by ADD+  models; and the “diff” 
column represents the difference between *z  and *z . 
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As proposed in Section III.B, we would like to use the solutions provided by  both 

[ ]LPADD+  and [ ]LPMXSP+ , as a strong bound for DAD. Furthermore, by means of 

solution-elimination constraints, we could approximate the bound to the objective-

function value to meet the optimality criterion. However, as shown in Table 3, the 

solution times at the same level of tolerance, are not comparable: those for the standard 

decomposition DAD model are one order of magnitude faster than those for [ ]LPADD+  

and  [ ]LPMXSP+ .  

Algorithm 4, presented in Section IV.D, proposed a decomposition method 

[ -D]LPMXSP+  to solve [ ]LPMXSP+ . The former proves to be faster especially for 

networks with square topology as in this case (See results in Apendix II). In fact, when 

we run the same problems of Table 3, [ -D]LPMXSP+  is 2.56 times faster than 

[ ]LPMXSP+ , on average. However, solution times are still too long compared to those of 

standard DAD (Algorithm 1). 
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VI. PRACTICAL EXAMPLE  

This chapter illustrates an example based on a hypothetical emergency 

deployment of a unit of the  Spanish Marine Corps. This exercise requires the solution of 

an instance of DSP (Defending the Shortest Path) to plan defenses for a small Infantry 

entity that needs to traverse from its home base in San Fernando to the Naval Base in 

Rota, for emergency deployment. All the information used in this example has been 

gathered from open sources, such as the Internet, journals published by regional traffic 

management authorities, and the Spanish Department of Defense.  

A. PROBLEM DEFINITION 

The home base of the Spanish Marine Corp Brigade is located in the city of San 

Fernando, province of Cadiz, in the south of Spain. The city has a population of over 

90,000 (Wikipedia 2007), is expanding rapidly and the brigade’s movements just outside 

the base can easily become entangled in the consequent construction activity. This fact is 

important in this scenario: The brigade needs to reach the Naval Base located in Rota, 

thirty miles north of San Fernando at the opposite side of Cadiz Bay (Figure 8). 

The Special Operation Forces (SOF) are also located in the same military 

installations as the Brigade.  
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Figure 8.   Map of Cadiz Bay (Spain) showing the two sites of interest (Map 
from Wikipedia 2007). 

 

Let us consider the following hypothetical scenario: A frigate from the 41st Fleet 

Squadron (home-based at Rota Naval Base) is alerted and receives orders to get 

underway immediately for a maritime interdiction operation against a suspect vessel 

transiting through the Strait of Gibraltar. For that mission, an estol (a small special 

operations unit) is also alerted, and ordered to transit to the dock in Rota Naval Base, 

prior to the frigate’s departure. Since air assets are already committed to other tasks, the 

estol must transit using its own means, which means with humvees and trucks. The 

suspect vessel is operated by a terrorist organization that soon becomes aware that the 

most likely spot for the vessel to be interdicted is precisely in the Strait (in Spanish 

territorial waters). Thus, a terrorist dormant cell is alerted to conduct counter-deployment 

actions. 
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Since the estol (who plays the role of the “defender-operator”) constitutes a small 

and indivisible infantry unit, we will model its transit to destination as a shortest-path 

problem: the estol  must transit from San Fernando (source node) to Rota (sink node) in 

the minimum possible time. 

Continuing with the scenario, the now-active terrorist cell, i.e., the “attacker,” 

comprises six autonomous units with enough striking power to put road segments out of 

action for at least one hour. We might envision an attack as a chemical spillage caused by 

a deliberate wreck of a previously hijacked truck. This truck transports hydrogen cyanide, 

which is a widely used agent in many industrial processes and has a persistency in soil 

close to one hour (Sidell 2002). 

By means of intelligence reports, this information is known by the estol’s Special 

Operations Forces command, i.e., the “defender.” SOF command has the option to plan 

ahead, which means deploying up to 10 patrolling units along the road network. To 

minimize the maximum transit delay the terrorist cell can achieve, SOF command must 

solve a tri-level optimization problem to use sparse resources wisely. This and similar 

scenarios would probably be foreseen, however, and the solution to this problem would 

be  available “off the shelf.” 

Further assumptions for the problem are: 

• By traversing an interdicted road, the estol “agrees” to pay the penalty in 

its entirety. The full delay is incurred if the road segment is traversed, 

regardless of the time it takes the estol to get there. (We are being 

conservative with respect to the estol’s transit time, because some cleanup 

might have been completed by the time that the estol reaches a section of 

road that has been attacked.) 

• At time zero, when the estol starts its mission, all transit assets (i.e., 

vehicles and trucks) are available for immediate use. 

• The model does not account for transit delays in road intersections. 
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B. BUILDING THE NETWORK 

Given the background above, the next step is to develop a model of the relevant 

road network. This is facilitated through road maps of the Cadiz Bay area, information 

provided by local authorities regarding traffic routes (Consejería de Obras Públicas y 

Transportes 2006), and satellite images downloaded from the Internet (Google 2007). A 

total of 195 nodes are identified. Table 4 shows a snapshot of the list containing all 

nodes, each with a brief description, the city or county they belong to, geographical 

position in latitude and longitude coordinates, and the node type (with 1 being the source, 

–1 the sink, and 0 indicating a transit node). Appendix III presents the full table. 

 

Node number description Location Latitude Longitude Type
1 TEAR San Fernando 36º 28'43.83" N 6º 11'30.05" W 1
2 Armada & la Clica San Fernando 36º 28'51.96" N 6º 11'28.67" W 0
3 La Carraca bridge San Fernando 36º 28'49.28" N 6º 10'50.59" W 0
4 La Carraca dock San Fernando 36º 20'54.69" N 6º 10'51.59" W 0
5 Arapiles rd & La Carraca rd San Fernando 36º 28'43.55" N 6º 11'02.54" W 0
6 Fadricas rd & Caserio de Ossio San Fernando 36º 29'00.20" N 6º 11'45.00" W 0
7 Fadricas rd & Magallanes San Fernando 36º 28'36.54" N 6º 12'27.17" W 0
8 Sfdo Train Station San Fernando 36º 28'33.49" N 6º 11'40.17" W 0
9 Magallanes & Ferrocaril San Fernando 36º 28'30.64" N 6º 11'54.70" W 0

 
Table 4.   Node-list snapshot for the sample network. It includes node 

description, location, geographical position and type (type “1” 
represents the source node, “0” a transit node and “−1” the sink 
node (not shown here). 

 

Since our question revolves around response times, the obvious cost on each arc 

will represent the nominal time a vehicle takes for a one-way transit. To find this time, 

we require two values for each arc: distance and speed. By dividing distance by speed, 

we obtain a transit time, hereafter referred to as “cost.” 

The distance values are found using maps and online navigation engines such as 

Google 2007. Finding speed values is not so straightforward, necessitating some 

subjective estimates. We develop a ranking scale of one to five representing five distinct 

average transit speeds, ranging from 15 mph to 55 mph, in intervals of 10 mph. Each 

route segment is assigned one of these values, based on the type of road (e.g., highway, 

freeway, local road) Also, other factors are taken into account such as the number of 
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lanes, the state of pavement, number of intersections, degree of straightness, etc. A total 

of 632 segments are labeled encompassing 453.4 miles of road.  

Finally, each arc of the network needs to be assessed in terms of amount of delay 

that an interdiction might cause. Two aspects are considered here: persistency of the 

chemical agent and the shortest distance (minimum time) to the nearest Civil Protection 

or Emergency Management Centers (we assume that setup procedures, safety protocols 

and cleanup tasks are implemented as soon as the first emergency-response team reaches 

the scene of the “chemical attack” and the clock starts running). The nine centers are 

located in the area map and the shortest distances from each one of them to every other 

node in the network are calculated.  

Let {1,2,..., 207}=N denote the set of all nodes in the network and {1,2,...,9}=C  

denote the set of all emergency centers. Also, let ( , )g c n  denote the minimum cost 

(transit time) from emergency center c∈C  to node i∈N . Then, the delay coefficient 

,i jd  for the road segment ( , )i j A∈  is calculated as: 

( ) ( ),
1 min ( , ) max ( , )
2i j a

c c
d p g c i g c j

∈ ∈

⎛ ⎞= + +⎜ ⎟
⎝ ⎠C C

 

where ap  denotes the persistency of the chemical agent. The second term represents the 

average of response times to the head and tail node of the arc ( , )i j , in case this arc is 

attacked. We are assuming that emergency centers have enough capacity to provide 

response teams for all possible incidents, and that response teams are not themselves 

subject to delays. (Response teams have protective equipment and can pass easily 

through one attack site to reach another.) 

The following table shows a snapshot of the list containing, for every arc, its 

transit-speed rank, length (miles), transit-speed (mph), cost (hours), and penalty if 

attacked (hours):   
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From to ranked value distance speed cost delay
1 2 2 0.11 25 0.004 1.237
1 8 1 0.39 15 0.026 1.233
1 32 1 0.38 15 0.025 1.233
2 1 2 0.11 25 0.004 1.237
2 3 3 0.68 35 0.019 1.237
2 6 2 0.6 25 0.024 1.246
2 31 2 1.17 25 0.047 1.284
3 2 3 0.68 35 0.019 1.237

 
Table 5.   Snapshot of the arc list for the sample network. It includes tail and 

head nodes, transit-speed rank, distance (miles), transit-speed 
(miles/hour), cost (hours) and delay (hours). 

 

Appendix III provides a complete listing of the final network data. 

C. SOLVING THE PROBLEM 

Algorithm 1, based on [ ]LPDAD mxm , is implemented in GAMS (GAMS 

Development Corporation 2007) with the following runtime parameters: 

• Solver for LPs and MIPs: XPRESS (v. 16.10) 

• Absolute and relative termination criterion for MIP: 0.0  

• Allowable relative  gap between bounds in the Benders decomposition 

method: 0.0 

Computation is performed on a personal computer (Processor x86, Family 6, 

Model GenuineIntel 1596 Mhz with 1 Gb of RAM). Table 6 shows  the results for this 

problem: 
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Estol deployment example. Summary 1  [ ]LPDAD  
CPU time 9,112.0 sec.  
Num. variables in master problem 633  
Num. of iterations in the algorithm 184  
Shortest s-t path length with no attacks 0.5288 hrs 
Shortest s-t path length with 6 attacks, no defenses 2.7356 hrs 
Shortest s-t path length with 6 attacks, 10 defenses 1.7019 hrs 

 
Table 6.   Computational results for Algorithm 1 [ ]LPDAD . The number of 

equations in the final master problem comprises 184 “cuts” plus 
one resource constraint. 

 

The complete optimal defense plan is listed in Table 13. As anticipated, the 

defender-operator (estol) does not use all the road segments that have been defended 

( )1 1k kw y= ⇒ = . The reason is that the SOF Command, lacking defensive resources to 

protect one route entirely, seeks to spread the patrolling effort among the main three 

routes out of San Fernando city. With six units of resource, the terrorist group is able to 

interdict each of those, achieving the group’s goal of delaying the estol’s transit to its 

destination. Figure 12 depicts this solution over the area map. 

Next, we proceed to test the other algorithms to see how well they perform on this 

problem. Table 7 shows the results obtained when applying [ -CN2]LPDAD  (see 

equations (18)-(21)  ).  

 

Estol deployment example. Summary 2 [ -CN2]LPDAD , (M=2) 
CPU time 43,000 sec.  
Num. variables in master problem 633  
Num. of iterations in the algorithm 49  
Shortest s-t path length with no attacks 0.5288 hrs 
Shortest s-t path length with 6 attacks, 10 defenses 1.7019 hrs 

 
Table 7.   Computational results of Algorithm 2 [ -CN2]LPDAD  with M = 2.0 

 

The algorithm yields the same solution, but it takes almost 12 hours to solve. The 

burden of the algorithm is the value of the M coefficient. Consequently, different values 
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of M are tried: For M = 1, the problem only takes 3,085 seconds (51 min.) but the 

objective value that it yields (1.6361) is  3.9%  smaller than what it should be. With 

M 1.2 maxk kd= = , Algorithm 2 finds the optimal solution (and proves optimality) in a 

more reasonable completion time of 3 hours and 9 minutes. 

Implementing [ ]LPADD  to compute an optimistic lower bound for this problem 

leads to a dead end. Since the defender has more resources (10) than the attacker (6), the 

former is able to nullify all the attacks and always bring down the lower bound to the 

value of the shortest s-t path with no attacks.  

On the other hand, the decomposition algorithm for [ ]LPADD+  (Algorithm 3 in 

Section IV.C), with 16 units of resource for the attacker, moves its bounds sluggishly 

toward the optimal value of the problem. After 10 hours of execution, the lower bound is 

still only 0.58 (and not close to proving optimality because the global upper bound is 

4.11) versus a potential value as large as  *z =1.709 . Since the d coefficients are a critical 

parameter in ADD models, we apply a systematic reduction of 0.5 hours to all road 

segments, hoping that the solution is still valid and the bounds converge more quickly. 

However, the convergence of the bounds is still too slow.   

Finally, as an alternative way to solve [ ]LPADD+  and to obtain an optimistic 

lower bound on *z , the specialized model [ ]LPMXSP+  is run with 16 units of resource for 

the attacker and 10 for the defender. The problem solves in under 3 hours but yields an 

optimal objective value of 0.53, which still is too far from * 1.709z =  to be of any value. 

D. ANALYSIS 

Because of the particular structure of the road network for this deployment 

problem, the terrorist group can, with six strikes, disrupt all main routes that connect San 

Fernando and Rota. The estol has no other alternative than to wait for the completion of 

at least one cleanup, which, unavoidably, delays its transit to the Naval Base.  
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A quick look at the solution shows that attacks are spread throughout the network 

and not concentrated around the source and sink nodes. The reason for that might be that 

the attacker gains a little more reward by placing his attacks far from emergency-

response centers. 

Algorithm 1 seems to be the most useful method to solve DSP for this scenario. In 

addition, Algorithm 2 [ -CN]DAD  offers a reasonable alternative, provided that that the 

constant M is selected carefully. 

The fact that the penalty coefficients are much greater than the costs (30.52 times 

larger on average), makes the problems difficult to solve (see Israeli and Wood 2002). It 

becomes clear in the implementation of [ ]LPADD+ , where the time required to solve (11+ 

hours) is unacceptable for practical purposes. Therefore, those coefficients need to be 

reduced or tightened in such a way that they remain valid for the original problem. When 

we try this technique on Algorithm 1 [ ]LPDAD , by artificially reducing all kd  

coefficients by 0.50 (the smallest penalty is still larger than the shortest s-t path with no 

attacks), we obtain the correct solution and, interestingly, a remarkable reduction in 

execution time (4,359 seconds). 

However, the kd  coefficient-reduction technique does not seem to work with 

[ ]ADD+ . 
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VII. CONCLUSIONS  

This thesis has defined and developed tri-level models to solve the problem of 

defending critical infrastructure. The objective of the defender in the outer level of these 

models is to protect a set of activities given a certain amount of defensive resource. The 

goal is to minimize the worst damage that a potential attacker can inflict to the system. 

Damage is measured by increased costs at the innermost level, assuming that the 

defender-operator operates the system optimally. Of course, “cost” can represent 

unsatisfied demands, time delays in achieving goals, and minimizing “cost” can also 

represent maximizing effectiveness, e.g., system output. 

We have formulated a DAD model that is, apparently, solvable only through 

decomposition. Algorithm 1 is devised to solve the DAD model. The master problem of 

this decomposition algorithm looks like a master problem for a standard Benders 

decomposition of a mixed-integer linear program, but the subproblem is a mixed-integer 

linear program (MIP) rather than standard linear program (LP). Algorithm 1 solves this 

MIP directly, i.e., with LP-based branch-and-bound, while Algorithm 1A solves the MIP 

by Benders decomposition, and thus, it may be viewed as a nested decomposition 

algorithm. Algorithm 1A proves to be almost twice as fast as Algorithm 1 (1.87 times 

faster, on average) on test problems that involve “defending the shortest path” (DSP). 

DSP represents a situation in which the defender-operator needs to solve an A-B shortest-

path problem to operate the system optimally, that is, he wants to move from node A in a 

road network to node B in the minimum time possible; the attacker seeks to maximize 

this minimum path length by interdicting a limited number of road segments and making 

them impassible (or adding a delay to their traversal times); but before any attacks occur, 

the defender can make a limited number of road segments invulnerable to attack. against 

a limited number of attacks so as to reduce effects. The defender’s goal is to minimize the 

maximum shortest-path length. 

For a small number of offensive and defensive resources, the overhead of a nested 

decomposition algorithm suggests the use of the standard decomposition method 

(Algorithm 1). In addition, for the size of the shortest-path network, the factor “available 
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attack resource” proves to affect solution time more than the amount of defensive 

resource, specifically, more attack resource leads to longer solution times.  

Algorithm 1B is similar to Algorithm 1 except for the inclusion of a capacity-

expansion LP to tighten the lower bound. This proves to be especially useful on the early 

iterations of the algorithm. In the cases where the numbers of attacks are sparse and the 

algorithm typically tends to solve with few iterations, 1B is, on average, 4.70 faster than 

Algorithm 1 for the DSP on a square lattice. 

A different approach to the tri-level problem is the reformulation-based capacity-

interdiction model [ -CN]DAD . This formulation is somewhat more complex than the 

general DAD alluded to above and is more difficult to implement. It too requires a 

decomposition algorithm to solve (Algorithm 2), and it proves to be almost as fast as 

Algorithm 1A. Its solution times depends heavily on a “big-M” value used in linearizing 

the model. An excessively large value weakens the subproblem and leads to a poor 

performance in terms of completion time. On the other hand, a too small value of M 

speeds up the algorithm but does not guarantee a correct solution. It might be interesting 

for future research to investigate useful techniques to tighten the upper bound coming 

from the decomposition subproblem by selecting an appropriate value of M. 

Interchanging the order of the first two levels of optimization in the model, that is, 

converting min-max-min into min-min-max, can provide an optimistic (lower) bound on 

the optimal DAD objective-function value. We give the advantage to the defender, who 

sees the attacker’s plan before defending the system and operate it. The quality of the 

bound provided by this reordering-based ADD might be poor, however, but we have 

shown that it is possible to improve the bound by adding appropriately to the attacker’s 

resource to create “ ADD+ .” The relative differences between the bound obtained from 

ADD+  and the optimal value of DAD are reasonably small (5.5% on average) when the 

DSP problem is implemented on a square lattice, although these differences tend to 

increase as resources for both attacker and defender increase together. We would like to 

use this bound in the solution of DAD. However, the computational times observed for 

ADD+  are excessive, some times larger than solving DAD by, say, Algorithm 1.   
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Interestingly, for DSP, ADD+  can also be solved as a “Maximizing the Shortest-

Path” (MXSP) in an expanded network, assuming that the attacker and defender are 

constrained only by the number of arcs that can be attacked or defended respectively. 

MXSP is a bi-level attacker-defender network-interdiction model. The original network is 

expanded in levels according to the number of arcs that can be defended.  MXSP can be 

solved directly or by using Benders decomposition. The latter method proves to be faster 

than ADD+  itself, but it is still too slow compared to DAD, at least for DSP. 

A practical DSP example is presented to illustrate the effectiveness of the models 

and solution procedures to solve realistic problems. Essentially, a small Spanish infantry 

unit must traverse from the Marine Corp HQ to the Naval Base for immediate 

deployment, using the road network in Cadiz Bay (Spain). A terrorist group is able to 

interdict up to 6 road segments, and the Marine Corp Command has the option to plan 

ahead, protecting 10 segments by means of armed patrols. The network built to represent 

this example contains almost 200 nodes and 630 arcs. The problem is solved by 

Algorithm 1, implemented in GAMS, in a reasonable execution time of two and a half 

hours. 

The fact that the penalty coefficients are much greater that the costs makes the 

problems difficult to solve. Thus, a systematic reduction in all coefficients was made in 

hopes that the solution obtained is still valid. As a precautionary measure, no penalty 

should decreased below the value of the shortest s-t path without attacks. The procedure 

in this case proves to be valuable, cutting down the execution time by half. 

In future research, it may be interesting to explore other instances of the tri-level 

problem, perhaps one in which the theory developed here regarding ADD, applies better 

than the DSP.  
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APPENDIX I. NOTATION 

The following describes the notation and major symbols used in this thesis. 

Particular cases may need additional notation and this is explained when used. Vectors, 

represented by lower-case bold letters, are column vectors. Uppercase letters represent 

matrices, and Greek letters dual variables.  

 

Symbol Description 

c  Operating cost 

D  Diagonal matrix of penalties 

f  Function, usually in an objective (e.g., max ( )f x ) 

g  Function, usually in an objective (e.g., min ( )g x ) 

,i j  Network nodes 

k  System activities 

t  Superscript index for decomposition methods 

U  Diagonal matrix of activity capacities 

v  Binary variable used in the practical example 

w  Defensive plan (binary vector) 

W  Feasible set for defensive plans w  

x  Attack plan (binary vector) 

X  Feasible set for attack plans x  

y  Defender-operator’s operating plan 

Y  Feasible set for operating plans y  

z  Objective value of an optimization model 
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Symbol Description 

α   Dual variables for operating constraints 

β  Dual variables for capacity-interdiction constraints 

δ  Real number 

ε  Real number that usually denotes tolerance 

φ  Dual variables for railroad constraints (practical example) 

θ  Dual variables for capacity constraints 

π  Dual variables for operating constraints 

∅  Empty set 

∑  Summation 

* Optimal value or solution (e.g., *z ) 

 
Table 8.   Notation and definition of terms used. 
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APPENDIX II. DETAILED COMPUTATIONAL RESULTS FOR 
PROBLEMS IN CHAPTER V   

A. STANDARD DAD AND NESTED DECOMPOSITION 

  
 Standard decomposition

Algorithm 1  
Nested decomposition 

Algorithm 1A 
Ratio 

Problem Att. Def. 
Time A 

(sec) 
Elap 
(sec) Iter 

Time B 
(sec) 

Elap 
Time Iter /A B  

1 2 2 2.7 4.2 3 1.2 7.5 3 2.30

2 2 3 3.4 5.3 4 3.3 13.2 5 1.04 

3 2 4 4.1 6.4 5 3.1 17.6 7 1.32 

4 2 5 4.3 7.0 6 3.9 21.5 9 1.12 

5 2 6 7.5 12.1 10 4.5 23.2 10 1.66 

6 2 7 7.8 13.9 12 7.3 32.0 15 1.06 

7 3 2 17.4 20.7 5 12.2 38.3 6 1.43

8 3 3 21.5 24.8 7 10.7 31.0 6 2.01 

9 3 4 32.9 39.2 13 27.5 68.8 11 1.20 

10 3 5 39.9 48.5 17 29.9 74.6 14 1.34 

11 3 6 44.4 55.4 21 15.7 53.0 13 2.82 

12 3 7 65.6 81.8 34 29.1 107.6 22 2.25 

13 4 2 64.7 68.2 7 38.2 75.9 6 1.69

14 4 3 93.1 98.3 10 69.8 128.3 10 1.33 

15 4 4 109.6 114.8 10 57.3 124.9 13 1.91 

16 4 5 183.1 192.9 21 84.9 191.2 17 2.16 

17 4 6 240.5 254.3 30 75.6 177.7 21 3.18 

18 4 7 287.0 303.7 37 151.4 342.5 35 1.90 

19 5 2 150.8 157.6 6 111.0 172.5 8 1.36

20 5 3 211.0 215.2 8 155.9 235.6 11 1.35 

21 5 4 473.6 480.2 21 238.8 397.3 16 1.98 

22 5 5 396.6 406.4 20 306.0 484.2 27 1.30 

23 5 6 548.2 562.8 30 337.6 554.2 30 1.62 

24 5 7 682.6 689.9 33 362.7 579.0 26 1.88 

25 6 2 852.8 856.3 7 394.3 467.0 6 2.16

26 6 3 979.3 983.2 8 691.5 816.7 12 1.42 
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 Standard decomposition
Algorithm 1  

Nested decomposition 
Algorithm 1A 

Ratio 

27 6 4 1587.0 1594.6 16 1030.0 1227.3 18 1.54 

28 6 5 2244.0 2255.8 26 1210.0 1451.8 25 1.85 

29 6 6 3047.0 3067.6 42 1719.0 2075.9 31 1.77 

30 6 7 4331.0 4362.2 69 1530.0 1897.3 36 2.83 

31 7 2 389.7 393.0 7 698.4 737.2 4 (0.56)

32 7 3 956.8 962.8 13 166.5 175.0 2 5.75 

33 7 4 1633.0 1643.4 22 617.2 648.0 2 2.65 

34 7 5 2212.0 2223.7 25 2302.0 2417.1 9 (0.96) 

35 7 6 2942.0 2959.3 39 5625.0 2500.1 36 (0.52)

 Avg: 1.87

 
Table 9.   Computational results for Algorithm 1 and Algorithm 1A 

implementing DSP with the standard decomposition and the nested 
decomposition methods, respectively Grid: lattice 10 10× . Number 
of decision variables: 383. Costs range: Uniform [0,1]. Penalties 
range: Uniform [1,2]. Model implementation: GAMS. Solver: 
XPRESS. Other parameters: optcr=0.01, allowable decomposition 
gap=0.01. The “ratio” column corresponds to the improvement 
(decline) of Algorithm 1A with respect to Algorithm 1. 

 
 

B. IMPROVED STANDARD DAD DECOMPOSITION 

 
 Standard decomp. 

Algorithm 1 
Algorithm 1B Ratio 

Prob. Att. Def. *z  time A (sec) Iter. time C (sec) Iter. /A C  

1 2 2 4.58 2.7 4 1.0 1 2.63 

2 2 3 4.58 3.4 5 1.0 1 3.37 

3 2 4 4.58 4.1 6 1.0 1 4.02 

4 2 5 4.58 4.3 7 1.0 1 4.21 

5 2 6 4.55 7.5 11 1.1 1 6.86 

6 2 7 4.55 7.8 13 1.1 1 7.14 

7 3 2 4.78 17.4 6 17.4 5 1.00 

8 3 3 4.75 21.5 8 21.5 7 1.00 

9 3 4 4.75 32.9 14 33.0 13 1.00 
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Prob. Att. Def. *z  time A (sec) Iter. time C (sec) Iter. /A C  
10 3 5 4.75 39.9 18 41.4 17 0.96 

11 3 6 4.58 44.4 22 40.7 18 1.09 

12 3 7 4.58 65.6 35 41.6 21 1.58 

13 4 2 4.96 64.7 8 64.1 7 1.01 

14 4 3 4.93 93.1 11 94.4 10 0.99 

15 4 4 4.81 109.6 11 109.9 10 1.00 

16 4 5 4.79 183.1 22 184.0 21 1.00 

17 4 6 4.79 240.5 31 241.0 30 1.00 

18 4 7 4.78 287.0 38 294.2 33 0.98 

19 5 2 5.20 150.8 7 150.8 6 1.00 

20 5 3 5.07 211.0 9 208.7 8 1.01 

21 5 4 5.07 473.6 22 480.1 21 0.99 

22 5 5 5.07 396.6 21 399.3 20 0.99 

23 5 6 5.02 548.2 31 557.1 30 0.98 

24 5 7 5.02 682.6 34 639.2 33 1.07 

25 6 2 5.35 852.8 8 836.0 7 1.02 

26 6 3 5.28 979.3 9 963.0 8 1.02 

27 6 4 5.25 1587.0 17 1591.2 16 1.00 

28 6 5 5.25 2244.0 27 2493.0 24 0.90 

29 6 6 5.18 3047.0 43 3251.0 40 0.94 

30 6 7 5.12 4331.0 70 4041.0 59 1.07 

31 7 2 5.68 389.7 8 381.7 7 1.02 

32 7 3 5.64 956.8 14 953.0 13 1.00 

33 7 4 5.59 1633.0 23 1554.0 20 1.05 

34 7 5 5.53 2212.0 26 2473.0 25 0.89 

35 7 6 5.35 2942.0 40 3670.0 39 0.80 

AVG: 1.64
 

Table 10.   Computational results for modified Algorithm 1B implementing 
DSP. (See Table 9 for problem and implementation parameters). 
The “ratio” column corresponds to the improvement (decline) of 
Algorithm 1B with respect to Algorithm 1. 
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C. CAPACITY-INTERDICTION DAD 

 
 Capacity-interdiction (M=2) 

Algorithm 2 
Capacity-interdiction (M=1)

Algorithm 2 

Prob Att. Def. 
time E 
(sec) 

Elap 
time Iter. /A E  

time F 
(sec)

Elap 
time Iter. /A F  

1 2 2 6.7 8.3 4 (0.39) 6.0 8.3 5 (0.44)

2 2 3 5.8 7.5 4 (0.58) 3.4 4.5 3 (0.99) 

3 2 4 8.6 11.0 5 (0.48) 4.4 6.2 5 (0.95) 

4 2 5 11.0 13.7 7 (0.40) 8.5 11.8 9 (0.51) 

5 2 6 10.2 12.9 7 (0.73) 6.2 9.1 8 1.20 

6 2 7 10.7 14.3 8 (0.73) 7.5 12.1 10 1.04 

7 3 2 37.0 38.9 5 (0.47) 15.5 17.4 4 1.12

8 3 3 31.8 35.0 5 (0.68) 19.2 21.4 5 1.12 

9 3 4 27.1 28.9 4 1.21 16.8 20.0 5 1.96 

10 3 5 47.0 51.0 9 (0.85) 29.5 34.1 10 1.35 

11 3 6 59.4 65.1 13 (0.75) 30.8 36.3 12 1.44 

12 3 7 62.5 68.7 15 1.05 26.0 31.2 12 2.52 

13 4 2 142.6 145.0 6 (0.45) 36.1 38.4 5 1.79

14 4 3 204.1 206.7 7 (0.46) 94.6 98.1 8 (0.98) 

15 4 4 387.0 394.1 13 (0.28) 74.1 77.5 9 1.48 

16 4 5 272.6 278.3 11 (0.67) 128.8 136.0 15 1.42 

17 4 6 288.0 295.6 16 (0.84) 125.4 134.5 17 1.92 

18 4 7 315.5 323.9 21 (0.91) 103.3 111.3 15 2.78 

19 5 2 809.4 811.8 6 (0.19) 133.3 137.5 7 1.13

20 5 3 1059.0 1062.8 10 (0.20) 184.7 189.2 10 1.14 

21 5 4 1211.0 1215.9 11 (0.39) 225.8 231.3 13 2.10 

22 5 5 1363.0 1369.6 17 (0.29) 296.1 303.9 16 1.34 

23 5 6 1184.0 1192.0 20 (0.46) 568.7 580.7 25 (0.96) 

24 5 7 1962.0 1976.9 37 (0.35) 588.5 602.7 36 1.16 

25 6 2 4237.0 4239.4 5 (0.20) 424.8 426.9 5 2.01

26 6 3 6988.0 6992.6 10 (0.14) 776.3 780.1 10 1.26 

27 6 4 7320.0 7325.3 12 (0.22) 1114.0 1121.3 18 1.42 

28 6 5 12440.0 12455.6 24 (0.18) 1157.0 1165.7 21 1.94 

29 6 6 12620.0 12635.9 34 (0.24) 1799.0 1815.7 38 1.69 
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Prob Att. Def. time E Elap Iter. /A E time F Elap Iter. /A F
30 6 7 14620.0 14588.9 40 (0.30) 1565.0 1581.1 38 2.77

31 7 2 3430.0 3431.9 5 (0.11) 371.2 374.4 7 1.05

32 7 3 5180.0 5197.4 7 (0.18) 1570.0 1573.7 10 (0.61) 

33 7 4 11950.0 11959.8 17 (0.14) 2985.0 2991.9 17 (0.55) 

34 7 5 13830.0 13839.7 20 (0.16) 2477.0 2436.2 21 (0.89) 

35 7 6 14440.0 14447.5 24 (0.20) 5180.0 5194.4 34 (0.57) 

36 7 7 24210.0 24226.5 38 (0.26) 4717.0 4732.9 36 1.33

Avg: (0.45) Avg: 1.36
 

Table 11.   Computational results for Algorithm 2 [ -CN2]LPDAD , 
implementing DSP for different defensive and interdiction 
resources. The improvement in solution times with respect to the 
standard decomposition [ ]LPDAD  is given by the ratio column 
(See Table 9 for problem and implementation parameters). 

 
 

D. MXSP PROBLEM IN AN EXPANDED NETWORK MODEL 

This section of the appendix illustrates the results obtained for the specialized 

ADD model developed in the body of the thesis, in Section D.IV. 

Table 12 shows execution times, in seconds, when [ ]LPMXSP and [ -D]LPMXSP  

are tested against a set of networks of different topology and increasing size. The long 

topology networks are rectangular grids with 3 nodes in the vertical axis and m > 3 nodes 

in the horizontal axis. Similarly, square-topology networks are based on an n n×  grid 

nodes. They are generated using Java code that randomly assigns costs to the arcs within 

the range [0, 1] and interdiction penalties in the range [1, 2].  

The number of defense and attack resources are kept fixed throughout the runs to 

two and four, respectively. The XPRESS solver is used within GAMS (XPRESS Solver 

Manual, GAMS 2007), with zero absolute termination criterion and a value for the 

allowable decomposition gap of 0.1ε =  for the decomposition algorithm. 
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Problem topology nodes 
interdictable 

arcs 
decision 
vars G+ [ ]LPMXSP+  [ -D]LPMXSP  iterations 

1 3×3 11 24 168 0.08 0.17 3

2 3×5 17 44 308 0.25 1.76 10 

3 3×7 23 64 448 0.44 1.97 18 

4 3×10 32 94 658 1.61 28.60 90 

5 3×13 41 124 868 2.53 15.30 47 

6 3×15 47 144 1008 9.69 59.03 94 

7 3×20 62 194 1358 5.31 29.16 53 

8 2×25 77 244 1708 44.70 219.43 167 

9 3×30 92 294 2058 13.94 61.87 74 

10 3×50 152 494 3458 1342.00 462.25 162 

11 4×4 18 48 336 0.16 0.77 10

12 5×5 27 80 560 0.63 1.10 10 

13 6×6 38 120 840 2.50 3.77 26 

14 7×7 51 168 1176 1.92 4.38 30 

15 8×8 66 224 1568 45.33 13.20 55 

16 10×10 102 360 2520 36.22 11.90 43 

17 12×12 146 528 3696 47.91 52.50 120 

18 15×15 227 840 5880 268.77 53.65 61 

19 20×20 402 1520 10640 10130.00 300.25 131 
 

Table 12.   Computational results for MXSP showing execution times when 
DSP is solved directly as a MIP [ ]LPMXSP  or by decomposition 
[ -D]LPMXSP , (See Algorithm 4 in Section IV.D). 

 

Figure 9 and Figure 10 show that there is a small difference in computational 

times for different network topologies. Square grids tend to solve faster than long 

networks, when comparing grids with roughly the same number of nodes.  

With respect to solution methods, the number of decision variables in the problem 

is the most significant factor. For grids with few nodes, [ -D]LPMXSP  solves faster, but 

beyond 100 nodes, decomposition methods do much better. There are orders of 

magnitude in the differences between solution times when the number of nodes increases. 
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Computational Results (Long topology)
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Figure 9.   Computational results for long topology grids. Differences in 

performance between [ ]LPMXSP  and [ -D]LPMXSP  become 
noticeable beyond 100 nodes (10×10 lattice). 

 

Computational Results (Square topology)
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Figure 10.   Computational results for square-topology grids. Beyond 200 

nodes (15×15 lattice), solving [ ]LPMXSP directly as a MIP is very 
computational expensive. 
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APPENDIX III. PRACTICAL EXAMPLE IN CHAPTER VI: 
FIGURES AND TABLES  

 
 

Figure 11.   Cadiz Bay road map showing the network nodes. (Map from 
Michelin 2007). 
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PLANS FROM OPTIMAL SOLUTION 

Defensive  plan Attack plan Shortest path  
tail head tail head tail head tail head 

1 2 50 51 1 8 122 140 
36 50 50 52 8 14 123 125 
55 57 107 106 14 16 125 122 
57 70 108 105 16 27 126 123 
70 72 158 171 27 110 140 141 
97 120 169 170 90 92 141 145 
98 97   92 93 145 146 

105 184   93 121 146 149 
120 127   94 95 149 203 
121 126   95 97 173 174 

    97 90 174 176 
    100 94 175 173 
    102 100 176 202 
    105 184 177 300 
    108 105 184 102 
    109 108 202 177 
    110 109 203 175 
    121 126   

 
Table 13.   Optimal defensive, attack and traversing plan for the estol DSP 

problem. 
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Figure 12.   Area map showing the optimal solution to the tri-level problem 
given by DAD (Map from Michelin 2007). 
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